Electro-optically induced absorption in α-Si:H/α-SiCN waveguiding multistacks

Electro optical absorption in hydrogenated amorphous silicon (α-Si:H) - amorphous silicon carbonitride (α-SiCxNy) multilayers have been studied in two different planar multistacks waveguides. The waveguides were realized by plasma enhanced chemical vapour deposition (PECVD), a technology compatible with the standard microelectronic processes. Light absorption is induced at λ=1.55 µm through the application of an electric field which induces free carrier accumulation across the multiple insulator/ semiconductor device structure. The experimental performances have been compared to those obtained through calculations using combined two-dimensional (2-D) optical and electrical simulations.

[1]  Nahum Izhaky,et al.  High-speed optical modulation based on carrier depletion in a silicon waveguide. , 2007, Optics express.

[2]  J. Sturm,et al.  High mobility nanocrystalline silicon transistors on clear plastic substrates , 2006, IEEE Electron Device Letters.

[3]  Antonella Sciuto,et al.  Miniaturizable Si-based electro-optical modulator working at 1.5 μm , 2005 .

[4]  M. Okamura,et al.  Infrared photodetection using a-Si:H photodiode , 1994, IEEE Photonics Technology Letters.

[5]  Richard A. Soref,et al.  Silicon-based optoelectronics , 1993, Proc. IEEE.

[6]  E. Centurioni,et al.  Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers. , 2005, Applied optics.

[7]  A. Boccara,et al.  Photothermal deflection spectroscopy and detection. , 1981, Applied optics.

[8]  F. D. Corte,et al.  In-guide pump and probe characterization of photoinduced absorption in hydrogenated amorphous silicon thin films , 2006 .

[9]  F. D. Corte,et al.  Simulation study and realisation of an a-Si:H emitter on GaAs , 1998 .

[10]  Ivo Rendina,et al.  Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics , 1998 .

[11]  Xavier Le Roux,et al.  Optical modulation by carrier depletion in a silicon PIN diode. , 2006, Optics express.

[12]  R. Soref,et al.  Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2/ , 1991 .

[13]  S. Jeannot,et al.  Comparison of optical passive integrated devices based on three materials for optical clock distribution , 2007 .

[14]  A. Rubino,et al.  Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition. , 1996, Optics letters.

[15]  G. V. Treyz,et al.  Silicon optical modulators at 1.3- mu m based on free-carrier absorption , 1991, IEEE Electron Device Letters.

[16]  G. Cocorullo,et al.  Silicon thermooptical micromodulator with 700-kHz -3-dB bandwidth , 1995, IEEE Photonics Technology Letters.

[17]  E. Fortunato,et al.  Properties of a-Si:H TFTs using silicon carbonitride as dielectric , 2004 .

[18]  Matias Troccoli,et al.  Polysilicon TFT circuits on flexible stainless steel foils , 2006 .

[19]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[20]  Electrooptic modulation of multisilicon-on-insulator photonic wires , 2006, Journal of Lightwave Technology.