Ecological applications of physically based remote sensing methods

Abstract Global monitoring of vegetation using optical remote sensing has undergone rapid technological and methodological development during the past decade. Physically based methods generally apply reflectance models for interpreting remotely sensed data sets. These methods have become increasingly important in the assessment of terrestrial variables from satellite-borne and airborne images. Products based on satellite images currently include various ecological variables that are needed for monitoring changes in forest cover, structure and functioning, including biophysical variables such as the amount of photosynthesizing leaf area. This paper reviews variables and global products estimated from optical satellite sensors describing, for example, the amount and functioning of green biomass and forest carbon exchange. Continuous validation work as new vegetation products are released continues to be important. More emphasis is needed on the collection of field data equivalent to satellite retrievals, data harmonization and continuous measurements of seasonal forest dynamics.

[1]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[2]  Thomas Hilker,et al.  An assessment of photosynthetic light use efficiency from space: Modeling the atmospheric and directional impacts on PRI reflectance , 2009 .

[3]  J. Privette,et al.  Inversion methods for physically‐based models , 2000 .

[4]  Corinne Le Quéré,et al.  Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks , 2007, Proceedings of the National Academy of Sciences.

[5]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[6]  Lars Eklundh,et al.  Estimation of absorbed PAR across Scandinavia from satellite measurements. Part II: Modeling and evaluating the fractional absorption , 2007 .

[7]  G. Asner Biophysical and Biochemical Sources of Variability in Canopy Reflectance , 1998 .

[8]  Shunlin Liang,et al.  Mapping incident photosynthetically active radiation from MODIS data over China , 2008 .

[9]  Miina Rautiainen,et al.  Direct retrieval of the shape of leaf spectral albedo from multiangular hyperspectral Earth observation data , 2009 .

[10]  Chad J. Shuey,et al.  Validating MODIS land surface reflectance and albedo products: methods and preliminary results , 2002 .

[11]  B. Rock,et al.  Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline , 1988 .

[12]  J. Ross The radiation regime and architecture of plant stands , 1981, Tasks for vegetation sciences 3.

[13]  S. G. Nelson,et al.  Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape , 2008, Sensors.

[14]  Robert E. Dickinson,et al.  Land processes in climate models , 1995 .

[15]  W. Verhoef,et al.  Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data , 2007 .

[16]  Alan H. Strahler,et al.  Retrieval of Surface Albedo from Satellite Sensors , 2008 .

[17]  A.R.G. Lang,et al.  Application of some of Cauchy's theorems to estimation of surface areas of leaves, needles and branches of plants, and light transmittance , 1991 .

[18]  Frédéric Baret,et al.  Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography , 2004 .

[19]  W. Oechel,et al.  On the use of MODIS EVI to assess gross primary productivity of North American ecosystems , 2006 .

[20]  Patrick E. Van Laake,et al.  Mapping PAR using MODIS atmosphere products , 2005 .

[21]  Shunlin Liang,et al.  Earth system science related imaging spectroscopy — an assessment , 2009 .

[22]  Christopher B. Field,et al.  Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies , 1990, Oecologia.

[23]  R. Myneni,et al.  On the relationship between FAPAR and NDVI , 1994 .

[24]  R. Betts Offset of the potential carbon sink from boreal forestation by decreases in surface albedo , 2000, Nature.

[25]  K. Davis,et al.  The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes , 2009 .

[26]  Shunlin Liang,et al.  Recent developments in estimating land surface biogeophysical variables from optical remote sensing , 2007 .

[27]  J. Monteith Climate and the efficiency of crop production in Britain , 1977 .

[28]  S. Running,et al.  Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active , 1998 .

[29]  Maosheng Zhao,et al.  A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production , 2004 .

[30]  J. Welles Some indirect methods of estimating canopy structure , 1990 .

[31]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[32]  John A. Gamon,et al.  Assessing leaf pigment content and activity with a reflectometer , 1999 .

[33]  D. Watson Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties, and within and between Years , 1947 .

[34]  R. Clark,et al.  Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression , 1999 .

[35]  W. Oechel,et al.  A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data , 2010, Remote Sensing of Environment.

[36]  Paul J. Curran,et al.  Evaluation of the MERIS terrestrial chlorophyll index , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[37]  J. Lindström,et al.  Towards operational remote sensing of forest carbon balance across Northern Europe , 2007 .

[38]  A. Strahler,et al.  Geometric-Optical Modeling of a Conifer Forest Canopy , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Alan H. Strahler,et al.  A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Frédéric Baret,et al.  Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[41]  T. Painter,et al.  Reflectance quantities in optical remote sensing - definitions and case studies , 2006 .

[42]  S. Prince A model of regional primary production for use with coarse resolution satellite data , 1991 .

[43]  S. Goward,et al.  Global Primary Production: A Remote Sensing Approach , 1995 .

[44]  F. Baret,et al.  Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems , 2008 .

[45]  Ramakrishna R. Nemani,et al.  Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[46]  J. Monteith SOLAR RADIATION AND PRODUCTIVITY IN TROPICAL ECOSYSTEMS , 1972 .

[47]  S. Goward,et al.  Vegetation canopy PAR absorptance and the normalized difference vegetation index - An assessment using the SAIL model , 1992 .

[48]  J. Heiskanen Tree cover and height estimation in the Fennoscandian tundra-taiga transition zone using multiangular MISR data , 2006 .

[49]  Petya K. Entcheva Campbell,et al.  Fluorescence sensing techniques for vegetation assessment. , 2006, Applied optics.

[50]  J. Townshend,et al.  Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm , 2003 .

[51]  S. Ganguly,et al.  Generating vegetation leaf area index earth system data record from multiple sensors. Part 1: Theory , 2008 .

[52]  Patrick E. Van Laake,et al.  Estimation of absorbed PAR across Scandinavia from satellite measurements : Part I: Incident PAR , 2007 .

[53]  Y. Knyazikhin,et al.  Validation and intercomparison of global Leaf Area Index products derived from remote sensing data , 2008 .

[54]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[55]  T. A. Black,et al.  A MODIS-derived photochemical reflectance index to detect inter-annual variations in the photosynthetic light-use efficiency of a boreal deciduous forest , 2005 .

[56]  J. W. Seaquista,et al.  A remote sensing-based primary production model for grassland biomes , 2003 .

[57]  Ranga B. Myneni,et al.  The interpretation of spectral vegetation indexes , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[58]  E. Raymond Hunt,et al.  Estimation of Carbon Sequestration by Combining Remote Sensing and Net Ecosystem Exchange Data for Northern Mixed-Grass Prairie and Sagebrush–Steppe Ecosystems , 2004 .

[59]  D. Baldocchi Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future , 2003 .

[60]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[61]  Alan H. Strahler,et al.  Retrieval of land surface albedo from satellite observations: a simulation study , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[62]  N. Gobron,et al.  Evaluation of the MERIS/ENVISAT FAPAR product , 2007 .

[63]  Uwe Rascher,et al.  Measuring photosynthetic parameters at a distance: laser induced fluorescence transient (LIFT) method for remote measurements of photosynthesis in terrestrial vegetation , 2005, Photosynthesis Research.

[64]  P. Stenberg Simple analytical formula for calculating average photon recollision probability in vegetation canopies , 2007 .

[65]  Ranga B. Myneni,et al.  Influence of small-scale structure on radiative transfer and photosynthesis in vegetation canopies , 1998 .

[66]  Alemu Gonsamo Gosa,et al.  Remote sensing of leaf area index : enhanced retrieval from close-range and remotely sensed optical observations , 2009 .

[67]  A. Kuusk,et al.  A Directional Multispectral Forest Reflectance Model , 2000 .

[68]  C. Tucker,et al.  Satellite remote sensing of primary production , 1986 .

[69]  J. Monteith,et al.  The Radiation Regime and Architecture of Plant Stands. , 1983 .

[70]  G. Rondeaux,et al.  Optimization of soil-adjusted vegetation indices , 1996 .

[71]  R. Lawrence,et al.  Early Detection of Douglas-Fir Beetle Infestation with Subcanopy Resolution Hyperspectral Imagery , 2003 .

[72]  J. Chen,et al.  Defining leaf area index for non‐flat leaves , 1992 .

[73]  Karl Staenz,et al.  Review of current and planned civilian space hyperspectral sensors for EO , 2008 .

[74]  Miina Rautiainen,et al.  Modeling the Spectral Signature of Forests: Application of Remote Sensing Models to Coniferous Canopies , 2008 .

[75]  S. Ustin,et al.  Estimating leaf biochemistry using the PROSPECT leaf optical properties model , 1996 .

[76]  Jean-Philippe Gastellu-Etchegorry,et al.  Forest canopy chemistry with high spectral resolution remote sensing , 1996 .

[77]  O. Hagolle,et al.  LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm , 2007 .

[78]  S. Ganguly,et al.  Author ' s personal copy Generating vegetation leaf area index Earth system data record from multiple sensors . Part 2 : Implementation , analysis and validation , 2008 .

[79]  V. Demarez,et al.  A Modeling Approach for Studying Forest Chlorophyll Content , 2000 .

[80]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[81]  E. Davidson,et al.  Satellite-based modeling of gross primary production in an evergreen needleleaf forest , 2004 .

[82]  Sylvain G. Leblanc,et al.  A four-scale bidirectional reflectance model based on canopy architecture , 1997, IEEE Trans. Geosci. Remote. Sens..

[83]  Christopher B. Field,et al.  2 – Ecological Scaling of Carbon Gain to Stress and Resource Availability , 1991 .

[84]  Mathias Disney,et al.  Monte Carlo ray tracing in optical canopy reflectance modelling , 2000 .

[85]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[86]  Richard Fernandes,et al.  Systematic mapping of Leaf Area Index across Canada using 250-meter MODIS data , 2010 .

[87]  S. Liang Quantitative Remote Sensing of Land Surfaces , 2003 .

[88]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[89]  Hongliang Fang,et al.  Estimation of incident photosynthetically active radiation from Moderate Resolution Imaging Spectrometer data , 2006 .

[90]  C. François,et al.  Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements , 2004 .

[91]  Lars Eklundh,et al.  Net primary production and light use efficiency in a mixed coniferous forest in Sweden , 2005 .

[92]  P. Stenberg,et al.  Simple parameterizations of the radiation budget of uniform broadleaved and coniferous canopies , 2005 .

[93]  F. Baret,et al.  Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data : Principles and validation , 2006 .

[94]  Marco Bindi,et al.  Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements , 2005 .

[95]  J. Gamon,et al.  The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels , 1997, Oecologia.

[96]  Pauline Stenberg,et al.  A simple parameterization of canopy reflectance using photon recollision probability , 2008 .

[97]  D. Sims,et al.  Potential of MODIS EVI and surface temperature for directly estimating per‐pixel ecosystem C fluxes , 2005 .

[98]  S. Nilsson,et al.  Comparison of four global FAPAR datasets over Northern Eurasia for the year 2000 , 2010 .

[99]  M. Monsi Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die Stoffproduktion , 1953 .

[100]  Hans Peter Schmid,et al.  Potential of MODIS ocean bands for estimating CO2 flux from terrestrial vegetation: A novel approach , 2004 .

[101]  S. Goetz,et al.  Satellite remote sensing of primary production : an improved production efficiency modeling approach , 1999 .

[102]  S. Goetz,et al.  Modelling Terrestrial Carbon Exchange and Storage: Evidence and Implications of Functional Convergence in Light-use Efficiency , 1999 .

[103]  Terhikki Manninen,et al.  Simulation of the effect of snow covered forest floor on the total forest albedo , 2009 .

[104]  Jean-Luc Widlowski,et al.  Third Radiation Transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models , 2007 .

[105]  Jan Pisek,et al.  Algorithm for global leaf area index retrieval using satellite imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[106]  C. Tucker,et al.  Increased plant growth in the northern high latitudes from 1981 to 1991 , 1997, Nature.

[107]  Miina Rautiainen,et al.  Application of photon recollision probability in coniferous canopy reflectance simulations , 2005 .

[108]  James Arvo,et al.  Monte Carlo Ray Tracing , 2003 .

[109]  R. Fernandes,et al.  Landsat-5 TM and Landsat-7 ETM+ based accuracy assessment of leaf area index products for Canada derived from SPOT-4 VEGETATION data , 2003 .

[110]  J. C. Price,et al.  Spectral band selection for visible-near infrared remote sensing: spectral-spatial resolution tradeoffs , 1997, IEEE Trans. Geosci. Remote. Sens..

[111]  Moon S. Kim,et al.  Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance , 2000 .

[112]  Rasmus Fensholt,et al.  MODIS leaf area index products: from validation to algorithm improvement , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[113]  Ranga B. Myneni,et al.  The role of canopy structure in the spectral variation of transmission and absorption of solar radiation in vegetation canopies , 2001, IEEE Trans. Geosci. Remote. Sens..

[114]  J. Dash,et al.  Evaluation of the MERIS terrestrial chlorophyll index , 2004 .

[115]  C. Potter,et al.  Analysis of a multiyear global vegetation leaf area index data set , 2002 .

[116]  W. Oechel,et al.  A scaling approach for quantifying the net CO2 flux of the Kuparuk River Basin, Alaska , 2000, Global change biology.

[117]  R. Fensholt,et al.  Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements , 2004 .

[118]  W. Cohen,et al.  Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy radiation transfer regimes: methodology and results using Joint Research Center products derived from SeaWiFS against ground-based estimations. , 2006 .

[119]  P. Sellers Remote sensing of the land surface for studies of global change , 1993 .

[120]  J. Ardö,et al.  A remote sensing-based primary production model for grassland biomes , 2003 .

[121]  Clement Atzberger,et al.  Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[122]  Alan H. Strahler,et al.  The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research , 1998, IEEE Trans. Geosci. Remote. Sens..

[123]  Pauline Stenberg,et al.  A note on the G-function for needle leaf canopies , 2006 .

[124]  S. Ganguly,et al.  Physical interpretation of the correlation between multi‐angle spectral data and canopy height , 2007 .

[125]  Ranga B. Myneni,et al.  Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model , 1996 .

[126]  S. Wofsy,et al.  Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data , 2004 .

[127]  Rasmus Fensholt,et al.  Remote Sensing , 2008, Encyclopedia of GIS.

[128]  Nadine Gobron,et al.  Advanced vegetation indices optimized for up-coming sensors: Design, performance, and applications , 2000, IEEE Trans. Geosci. Remote. Sens..

[129]  W. Kurz,et al.  Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances? , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[130]  S. Leblanc,et al.  Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements , 2002 .

[131]  John C. Bouwkamp,et al.  Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L. , 1998 .

[132]  The globcarbon initiative: Global biophysical products for global terrestrial carbon studies , 2008 .