Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications.

Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics.

[1]  K. Toriyama,et al.  A pentatricopeptide repeat‐containing gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male‐sterile rice , 2003, FEBS letters.

[2]  J. Görlach,et al.  Growth Stage–Based Phenotypic Analysis of Arabidopsis , 2001, The Plant Cell Online.

[3]  Jean-Marie Rouillard,et al.  OligoArray: genome-scale oligonucleotide design for microarrays , 2002, Bioinform..

[4]  M. Kuiper,et al.  European consortia building integrated resources for Arabidopsis functional genomics. , 2003, Current opinion in plant biology.

[5]  E. Wisman,et al.  Monitoring genome-wide expression in plants. , 2000, Current opinion in biotechnology.

[6]  G. Hagen,et al.  Auxin-responsive gene expression: genes, promoters and regulatory factors , 2002, Plant Molecular Biology.

[7]  Hao Chen,et al.  Oliz, a suite of Perl scripts that assist in the design of microarrays using 50mer oligonucleotides from the 3' untranslated region , 2002, BMC Bioinformatics.

[8]  Steen Knudsen,et al.  Design of oligonucleotides for microarrays and perspectives for design of multi-transcriptome arrays , 2003, Nucleic Acids Res..

[9]  Christopher D Town,et al.  Gene expression analyses of Arabidopsis chromosome 2 using a genomic DNA amplicon microarray. , 2003, Genome research.

[10]  K. Akiyama,et al.  Functional Annotation of a Full-Length Arabidopsis cDNA Collection , 2002, Science.

[11]  Yong Li,et al.  An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics , 2003, Plant Molecular Biology.

[12]  S. Kawasaki,et al.  Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. , 2003, The Plant journal : for cell and molecular biology.

[13]  P. Waterhouse,et al.  Constructs and methods for high-throughput gene silencing in plants. , 2003, Methods.

[14]  Y. Hiei,et al.  Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). , 2004, The Plant journal : for cell and molecular biology.

[15]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[16]  J. Chory,et al.  The Arabidopsis det3 mutant reveals a central role for the vacuolar H(+)-ATPase in plant growth and development. , 1999, Genes & development.

[17]  J. Hartley,et al.  DNA cloning using in vitro site-specific recombination. , 2000, Genome research.

[18]  Klaas Vandepoele,et al.  The hidden duplication past of Arabidopsis thaliana , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  The Arabidopsis knockout facility at the University of Wisconsin-Madison. , 2000, Plant physiology.

[20]  S. Goff,et al.  A High-Throughput Arabidopsis Reverse Genetics System Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.004630. , 2002, The Plant Cell Online.

[21]  K. Schumacher,et al.  A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H(+)-ATPase. , 2002, Trends in plant science.

[22]  Joseph M. Dale,et al.  Empirical Analysis of Transcriptional Activity in the Arabidopsis Genome , 2003, Science.

[23]  Phillip D. Zamore,et al.  RNA Interference , 2000, Science.

[24]  J. Glasner,et al.  Genome-wide expression profiling in Escherichia coli K-12. , 1999, Nucleic acids research.

[25]  C. Koncz,et al.  The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector , 1986, Molecular and General Genetics MGG.

[26]  W. Stiekema,et al.  A Two-Component Enhancer-Inhibitor Transposon Mutagenesis System for Functional Analysis of the Arabidopsis Genome , 1999, Plant Cell.

[27]  John Aach,et al.  Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S. Cutler,et al.  The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. , 1999, The Plant cell.

[29]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[30]  C. Somerville,et al.  Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. , 1997, The Plant cell.

[31]  Pierre Rouzé,et al.  Automatic design of gene-specific sequence tags for genome-wide functional studies , 2003, Bioinform..

[32]  K. Kaiser,et al.  The Drosophila melanogaster gene vha14 encoding a 14-kDa F-subunit of the vacuolar ATPase. , 1996, Gene.

[33]  S. Dudoit,et al.  Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. , 2002, Nucleic acids research.

[34]  L. Cattolico,et al.  Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide‐repeat protein family , 2003 .

[35]  M. Vidal,et al.  Protein interaction mapping in C. elegans using proteins involved in vulval development. , 2000, Science.

[36]  Douglas A. Hosack,et al.  Identifying biological themes within lists of genes with EASE , 2003, Genome Biology.

[37]  R. Hellens,et al.  pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation , 2000, Plant Molecular Biology.

[38]  R. Schilperoort,et al.  Plant Molecular Biology Manual , 1995, Springer Netherlands.

[39]  Yudong D. He,et al.  Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer , 2001, Nature Biotechnology.

[40]  A. Depicker,et al.  RNA Target Sequences Promote Spreading of RNA Silencing1 , 2003, Plant Physiology.

[41]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[42]  Peter M. Waterhouse,et al.  Exploring plant genomes by RNA-induced gene silencing , 2003, Nature Reviews Genetics.

[43]  P. Waterhouse,et al.  Construct design for efficient, effective and high-throughput gene silencing in plants. , 2001, The Plant journal : for cell and molecular biology.

[44]  Thomas Schiex,et al.  EUGÈNE: An Eukaryotic Gene Finder That Combines Several Sources of Evidence , 2000, JOBIM.

[45]  D. Inzé,et al.  The functional organization of the nopaline A. tumefaciens plasmid pTiC58. , 1980, Plasmid.

[46]  A I Saeed,et al.  TM4: a free, open-source system for microarray data management and analysis. , 2003, BioTechniques.

[47]  D. Baulcombe,et al.  High throughput virus‐induced gene silencing implicates heat shock protein 90 in plant disease resistance , 2003, The EMBO journal.

[48]  M. Schmid,et al.  Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana , 2003, Science.

[49]  S. Bentolila,et al.  A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Gary D. Stormo,et al.  Selection of optimal DNA oligos for gene expression arrays , 2001, Bioinform..

[51]  Jonathan Knight,et al.  When the chips are down , 2001, Nature.

[52]  Neil A. Smith,et al.  Gene expression: Total silencing by intron-spliced hairpin RNAs , 2000, Nature.

[53]  K. Feldmann,et al.  T-DNA insertion mutagenesis in Arabidopsis: going back and forth. , 1997, Trends in genetics : TIG.

[54]  V. Sundaresan,et al.  Analysis of Flanking Sequences from Dissociation Insertion Lines: A Database for Reverse Genetics in Arabidopsis , 1999, Plant Cell.

[55]  Ying Xu,et al.  PRIMEGENS: robust and efficient design of gene-specific probes for microarray analysis , 2002, Bioinform..

[56]  K. Kaiser,et al.  Analysis and Inactivation of vha55, the Gene Encoding the Vacuolar ATPase B-subunit in Drosophila melanogaster Reveals a Larval Lethal Phenotype* , 1996, The Journal of Biological Chemistry.

[57]  D. Leister,et al.  GST-PRIME: a genome-wide primer design software for the generation of gene sequence tags. , 2001, Nucleic acids research.

[58]  J. Weissenbach,et al.  Whole genome sequence comparisons and "full-length" cDNA sequences: a combined approach to evaluate and improve Arabidopsis genome annotation. , 2004, Genome research.

[59]  Xun Wang,et al.  Large-scale profiling of the Arabidopsis transcriptome. , 2000, Plant physiology.

[60]  Pierre Rouzé,et al.  CATMA: a complete Arabidopsis GST database , 2003, Nucleic Acids Res..

[61]  E. Liscum,et al.  Genetics of Aux/IAA and ARF action in plant growth and development , 2002, Plant Molecular Biology.

[62]  D. Inzé,et al.  Transcript profiling of early lateral root initiation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Jinfa F. Zhang,et al.  The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. , 2003, The Plant journal : for cell and molecular biology.

[64]  M. Saraste,et al.  FEBS Lett , 2000 .

[65]  S. Clough,et al.  Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. , 1998, The Plant journal : for cell and molecular biology.

[66]  Sandrine Balzergue,et al.  FLAGdb/FST: a database of mapped flanking insertion sites (FSTs) of Arabidopsis thaliana T-DNA transformants , 2002, Nucleic Acids Res..

[67]  T. Ferea,et al.  The vacuolar ATPase of Neurospora crassa is indispensable: inactivation of the vma-1 gene by repeat-induced point mutation. , 1996, Genetics.

[68]  H. Nojima,et al.  High efficiency transformation of Escherichia coli with plasmids. , 1990, Gene.

[69]  Sebastian Kloska,et al.  A complete BAC-based physical map of the Arabidopsis thaliana genome , 1999, Nature Genetics.

[70]  B. Haas,et al.  Full-length messenger RNA sequences greatly improve genome annotation , 2002, Genome Biology.

[71]  Andrew J. Holloway,et al.  Options available—from start to finish—for obtaining data from DNA microarrays II , 2002, Nature Genetics.

[72]  Jungwon Yoon,et al.  The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community , 2003, Nucleic Acids Res..

[73]  J. Ohlrogge,et al.  Microarray analysis of developing Arabidopsis seeds. , 2000, Plant physiology.

[74]  Pierre R. Bushel,et al.  Assessing Gene Significance from cDNA Microarray Expression Data via Mixed Models , 2001, J. Comput. Biol..