Frequency response as a surrogate eigenvalue problem in topology optimization

Summary This article discusses the use of frequency response surrogates for eigenvalue optimization problems in topology optimization that may be used to avoid solving the eigenvalue problem. The motivation is to avoid complications that arise from multiple eigenvalues and the computational complexity associated with computation of eigenvalues in very large problems. Copyright © 2017 John Wiley & Sons, Ltd.

[1]  O. SIAMJ.,et al.  A CLASS OF GLOBALLY CONVERGENT OPTIMIZATION METHODS BASED ON CONSERVATIVE CONVEX SEPARABLE APPROXIMATIONS∗ , 2002 .

[2]  Alain Remouchamps,et al.  Discussion on some convergence problems in buckling optimisation , 2008 .

[3]  Jakob S. Jensen,et al.  Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems , 2014 .

[4]  Shinji Nishiwaki,et al.  Topological design considering flexibility under periodic loads , 2000 .

[5]  N. Kikuchi,et al.  Topological design for vibrating structures , 1995 .

[6]  Noboru Kikuchi,et al.  Optimal design of controlled structures , 1996 .

[7]  C. Jog Topology design of structures subjected to periodic loading , 2002 .

[8]  Alexander P. Seyranian,et al.  Sensitivity Analysis of Multiple Eigenvalues , 1993 .

[9]  Graeme J. Kennedy,et al.  Large-Scale Compliance-Minimization and Buckling Topology Optimization of the Undeformed Common Research Model Wing , 2016 .

[10]  Anders Clausen,et al.  Efficient topology optimization in MATLAB using 88 lines of code , 2011 .

[11]  Prebuckling enhancement of beams and plates under uncertain loadings and arbitrary initial imperfections , 2007 .

[12]  Jakob S. Jensen,et al.  On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases , 2006 .

[13]  Ole Sigmund,et al.  Systematic design of phononic band–gap materials and structures by topology optimization , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  Boyan Stefanov Lazarov,et al.  Topology optimization using PETSc: An easy-to-use, fully parallel, open source topology optimization framework , 2015 .

[15]  Ichiro Hagiwara,et al.  Static and vibrational shape and topology optimization using homogenization and mathematical programming , 1993 .

[16]  H. P. Mlejnek,et al.  Some aspects of the genesis of structures , 1992 .

[17]  N. L. Pedersen Maximization of eigenvalues using topology optimization , 2000 .

[18]  N. Olhoff,et al.  Multiple eigenvalues in structural optimization problems , 1994 .

[19]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[20]  Jakob S. Jensen,et al.  Acoustic design by topology optimization , 2008 .

[21]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[22]  Jakob S. Jensen,et al.  Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide , 2005 .

[23]  Ole Sigmund,et al.  Topology optimization for transient wave propagation problems in one dimension , 2008 .

[24]  Dmitri Tcherniak,et al.  Topology optimization of resonating structures using SIMP method , 2002 .

[25]  Ole Sigmund,et al.  On projection methods, convergence and robust formulations in topology optimization , 2011, Structural and Multidisciplinary Optimization.

[26]  Ole Sigmund,et al.  Geometric properties of optimal photonic crystals. , 2008, Physical review letters.

[27]  N. Olhoff,et al.  Generalized incremental frequency method for topological designof continuum structures for minimum dynamic compliance subject to forced vibration at a prescribed low or high value of the excitation frequency , 2016 .

[28]  Mark Walker,et al.  Multiobjective optimization of laminated plates for maximum prebuckling, buckling and postbuckling strength using continuous and discrete ply angles , 1996 .

[29]  Niels Olhoff,et al.  Minimization of sound radiation from vibrating bi-material structures using topology optimization , 2007 .

[30]  Jakob Søndergaard Jensen,et al.  Topology optimization of dynamics problems with Padé approximants , 2007 .

[31]  M. Zhou,et al.  The COC algorithm, Part II: Topological, geometrical and generalized shape optimization , 1991 .

[32]  N. Kikuchi,et al.  Solutions to shape and topology eigenvalue optimization problems using a homogenization method , 1992 .

[33]  Y. Kim,et al.  Parallelized structural topology optimization for eigenvalue problems , 2004 .

[34]  Jennifer A. Scott,et al.  Level‐set topology optimization with many linear buckling constraints using an efficient and robust eigensolver , 2016 .