Biomechanical Evaluation of the Cross‐link Usage and Position in the Single and Multiple Segment Posterior Lumbar Interbody Fusion

Previous studies have neither explored the usage of cross‐links nor investigated the optimal position of the cross‐links in posterior lumbar interbody fusion (PLIF). This study evaluates biomechanical properties of cross‐links in terms of different fixation segments and optimal position in single‐ and multi‐segment posterior lumbar interbody fusion.

[1]  M. Farshad,et al.  Cross-links in posterior pedicle screw-rod instrumentation of the spine: a systematic review on mechanical, biomechanical, numerical and clinical studies , 2020, European Spine Journal.

[2]  Xin-Guang Yu,et al.  The role of transverse connectors in C1 -C2 fixation for atlantoaxial instability: is it necessary? - A biomechanical study. , 2020, World neurosurgery.

[3]  C. Chung,et al.  Cross-link is a risk factor for rod fracture at pedicle subtraction osteotomy site: A finite element study , 2019, Journal of Clinical Neuroscience.

[4]  Sohail K. Mirza,et al.  Trends in Lumbar Fusion Procedure Rates and Associated Hospital Costs for Degenerative Spinal Diseases in the United States, 2004 to 2015 , 2019, Spine.

[5]  Li-Xin Guo,et al.  Dynamic Response of the Lumbar Spine to Whole-body Vibration Under a Compressive Follower Preload , 2018, Spine.

[6]  N Arjmand,et al.  Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model. , 2017, Journal of biomechanics.

[7]  R. Lehman,et al.  Biomechanical stability of transverse connectors in the setting of a thoracic pedicle subtraction osteotomy. , 2015, The spine journal : official journal of the North American Spine Society.

[8]  Zhaoxing Pan,et al.  Cross-Links Do Not Improve Clinical or Radiographic Outcomes of Posterior Spinal Fusion With Pedicle Screws in Adolescent Idiopathic Scoliosis: A Multicenter Cohort Study , 2015, Spine deformity.

[9]  A Rohlmann,et al.  Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. , 2014, Journal of biomechanics.

[10]  L. Holmes,et al.  Effectiveness of cross-linking posterior segmental instrumentation in adolescent idiopathic scoliosis: a 2-year follow-up comparative study. , 2013, The spine journal : official journal of the North American Spine Society.

[11]  A. Kulkarni,et al.  Should We Cross the Cross-links? , 2013, Spine.

[12]  William E. Lee,et al.  Comparative analysis of posterior fusion constructs as treatments for middle and posterior column injuries: an in vitro biomechanical investigation. , 2013, Clinical biomechanics.

[13]  C. Reddy,et al.  An In Vitro Biomechanical Comparison of Single-Rod, Dual-Rod, and Dual-Rod With Transverse Connector in Anterior Thoracolumbar Instrumentation , 2012, Neurosurgery.

[14]  Mir M. Hussain,et al.  The Biomechanical Effect of Transverse Connectors Use in a Pre- and Postlaminectomy Model of the Posterior Cervical Spine: An In Vitro Cadaveric Study , 2011, Spine.

[15]  Christian M. Puttlitz,et al.  Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine , 2011, Computer methods in biomechanics and biomedical engineering.

[16]  C. Chao,et al.  Biomechanical comparisons of different posterior instrumentation constructs after two-level ALIF: a finite element study. , 2010, Medical engineering & physics.

[17]  R. Lehman,et al.  Biomechanical Contribution of Transverse Connectors to Segmental Stability Following Long Segment Instrumentation With Thoracic Pedicle Screws , 2008, Spine.

[18]  Lutz Claes,et al.  Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. , 2007, Clinical biomechanics.

[19]  R. Hart,et al.  Mechanical Stiffness of Segmental Versus Nonsegmental Pedicle Screw Constructs: The Effect of Cross-Links , 2006, Spine.

[20]  Antonius Rohlmann,et al.  Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data. , 2006, Journal of biomechanics.

[21]  Stephen J. Ferguson,et al.  Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis , 2003, European Spine Journal.

[22]  R. Wittenberg,et al.  [Biomechanical study on lumbar spondylodeses using an internal fixateur consisting of a titanium alloy]. , 2003, Zeitschrift fur Orthopadie und ihre Grenzgebiete.

[23]  L Claes,et al.  Influence of a Follower Load on Intradiscal Pressure and Intersegmental Rotation of the Lumbar Spine , 2001, Spine.

[24]  Howard S. An,et al.  Biomechanical Evaluation of Diagonal Fixation in Pedicle Screw Instrumentation , 2001, Spine.

[25]  K. Bachus,et al.  Segmental pedicle screw fixation or cross-links in multilevel lumbar constructs. a biomechanical analysis. , 2001, The spine journal : official journal of the North American Spine Society.

[26]  A. Patwardhan,et al.  A follower load increases the load-carrying capacity of the lumbar spine in compression. , 1999, Spine.

[27]  V K Goel,et al.  Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach. , 1994, Journal of biomechanical engineering.

[28]  Y K Liu,et al.  A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion. , 1987, Journal of biomechanical engineering.