Single‐Step Screening of the Potential Dependence of Metal Layer Morphologies along Bipolar Electrodes

The preparation of surface gradients is a hot topic in contemporary research. Among various physical chemistry approaches, bipolar electrochemistry allows the control of such gradients through the interfacial polarization between a conducting substrate and an electrolyte solution. Here, we report the straightforward, single‐step generation of metal composition gradients on cylindrical carbon fibers. The screening of different metal deposit morphologies, which evolve gradually along a bipolar electrode, is demonstrated with monometallic layers as well as a bimetallic composite layer based on copper and nickel.

[1]  L. Bouffier,et al.  Generation of metal composition gradients by means of bipolar electrodeposition , 2015 .

[2]  D. Schwartz,et al.  Localized Electrodeposition and Patterning Using Bipolar Electrochemistry , 2015 .

[3]  Wolfgang Schuhmann,et al.  Linking glucose oxidation to luminol-based electrochemiluminescence using bipolar electrochemistry , 2015 .

[4]  M. Shimomura,et al.  Targeted deposition of a conducting polymer based on bipolar electrochemistry , 2014 .

[5]  P. Schmuki,et al.  Bipolar anodization enables the fabrication of controlled arrays of TiO2 nanotube gradients , 2014, 1610.04877.

[6]  Jing-Juan Xu,et al.  Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of a cancer biomarker. , 2014, Chemical communications.

[7]  A. Kuhn,et al.  Site-selective synthesis of Janus-type metal-organic framework composites. , 2014, Angewandte Chemie.

[8]  L. Bouffier,et al.  Straight-forward synthesis of ringed particles , 2014 .

[9]  L. Bouffier,et al.  Imaging redox activity at bipolar electrodes by indirect fluorescence modulation. , 2014, Analytical chemistry.

[10]  Paria Shahbazi,et al.  Self-movement of water droplet at the gradient nanostructure of Cu fabricated using bipolar electrochemistry. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[11]  Tanyu Wang,et al.  Detection of ferrocenemethanol and molecular oxygen based on electrogenerated chemiluminescence quenching at a bipolar electrode. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[12]  R. Dryfe,et al.  Galvanic and bipolar cells as probes of electroless deposition: The Cu–dimethylamine borane system , 2013 .

[13]  L. Bouffier,et al.  Chemiluminescence from asymmetric inorganic surface layers generated by bipolar electrochemistry. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  L. Bouffier,et al.  Capillary electrophoresis as a production tool for asymmetric microhybrids , 2013, Electrophoresis.

[15]  S. Inagi,et al.  Parallel polymer reactions of a polyfluorene derivative by electrochemical oxidation and reduction. , 2013, Angewandte Chemie.

[16]  Neso Sojic,et al.  Bipolar electrochemistry: from materials science to motion and beyond. , 2013, Accounts of chemical research.

[17]  R. Crooks,et al.  Parallel screening of electrocatalyst candidates using bipolar electrochemistry. , 2013, Analytical chemistry.

[18]  Shuangqi Song,et al.  In situ study of copper electrodeposition on a single carbon fiber , 2013 .

[19]  A. Kuhn,et al.  Wireless electrografting of molecular layers for Janus particle synthesis. , 2013, Chemistry.

[20]  Alexander Kuhn,et al.  Indirect bipolar electrodeposition. , 2012, Journal of the American Chemical Society.

[21]  L. Bouffier,et al.  Controlled Orientation of Asymmetric Copper Deposits on Carbon Microobjects by Bipolar Electrochemistry , 2012 .

[22]  Alexander Kuhn,et al.  True Bulk Synthesis of Janus Objects by Bipolar Electrochemistry , 2012, Advanced materials.

[23]  Robbyn K. Anand,et al.  Dual-channel bipolar electrode focusing: simultaneous separation and enrichment of both anions and cations. , 2012, Lab on a chip.

[24]  Guonan Chen,et al.  Electrochemiluminescence imaging-based high-throughput screening platform for electrocatalysts used in fuel cells. , 2012, Analytical chemistry.

[25]  Alexander Kuhn,et al.  Bulk synthesis of Janus objects and asymmetric patchy particles , 2012 .

[26]  Jing-Juan Xu,et al.  Sensitive electrochemiluminescence detection of c-Myc mRNA in breast cancer cells on a wireless bipolar electrode. , 2012, Analytical chemistry.

[27]  Patrick Garrigue,et al.  Straightforward single-step generation of microswimmers by bipolar electrochemistry , 2011 .

[28]  S. Inagi,et al.  Gradient doping of conducting polymer films by means of bipolar electrochemistry. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[29]  A. Kuhn,et al.  Shaping and exploring the micro- and nanoworld using bipolar electrochemistry , 2011, Analytical and bioanalytical chemistry.

[30]  C. Shannon,et al.  Screening the optical properties of Ag-Au alloy gradients formed by bipolar electrodeposition using surface enhanced Raman spectroscopy. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[31]  S. Inagi,et al.  Bipolar patterning of conducting polymers by electrochemical doping and reaction. , 2010, Angewandte Chemie.

[32]  Richard M Crooks,et al.  Bipolar electrodes: a useful tool for concentration, separation, and detection of analytes in microelectrochemical systems. , 2010, Analytical chemistry.

[33]  R. Crooks,et al.  A sensing platform based on electrodissolution of a Ag bipolar electrode. , 2010, Journal of the American Chemical Society.

[34]  Curtis Shannon,et al.  Display of solid-state materials using bipolar electrochemistry. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[35]  R. Crooks,et al.  Bipolar electrode focusing: simultaneous concentration enrichment and separation in a microfluidic channel containing a bipolar electrode. , 2009, Analytical chemistry.

[36]  R. Dryfe,et al.  The voltammetric response of bipolar cells: Mechanistic investigations of electroless deposition , 2009 .

[37]  L. Nyholm,et al.  Potential and current density distributions at electrodes intended for bipolar patterning. , 2009, Analytical chemistry.

[38]  Richard M Crooks,et al.  Wireless electrochemical DNA microarray sensor. , 2008, Journal of the American Chemical Society.

[39]  L. Nyholm,et al.  Formation of molecular gradients on bipolar electrodes. , 2008, Angewandte Chemie.

[40]  F. Ross,et al.  The morphology and nucleation kinetics of copper islands during electrodeposition , 2006 .

[41]  M. Pavlović,et al.  The effect of hydrogen codeposition on the morphology of copper electrodeposits. I. The concept of effective overpotential , 2006 .

[42]  Debra R. Rolison,et al.  Electrochemical behavior of dispersions of spherical ultramicroelectrodes , 1986 .

[43]  J. R. Backhurst,et al.  A Preliminary Investigation of Fluidized Bed Electrodes , 1969 .