Linearly constrained estimation by mathematical programming

Abstract Some mathematical programming models of the mixing problem are discussed in this paper. Five models, based on different discrepancies, are considered and their fundamental properties are examined. Using variational and Smirnov distances, linear programming models are obtained. Pearson divergence leads to quadratic programming, Hellinger divergence leads to l p -programming and the Kullback-Leibler information divergence gives a special geometric programming model. Finally some computational experiences are presented.

[1]  G. V. Reklaitis,et al.  A comparison of computational strategies for geometric programs , 1978 .

[2]  Thomas R. Jefferson,et al.  A generalisation of geometric programming with an application to information theory , 1977, Inf. Sci..

[3]  Linus Schrage,et al.  Linear, Integer, and Quadratic Programming with Lindo , 1984 .

[4]  A. Charnes,et al.  Constrained Kullback-Leibler Estimation; Generalized Cobb-Douglas Balance, and Unconstrained Convex Programming. , 1975 .

[5]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[6]  Clarence Zener,et al.  Geometric Programming : Theory and Application , 1967 .

[7]  Clarence Zener,et al.  Geometric Programming , 1974 .

[8]  A. Charnes,et al.  BLENDING AVIATION GASOLINES-A STUDY IN PROGRAMMING INTERDEPENDENT ACTIVITIES IN AN INTEGRATED OIL COMPANY' , 1952 .

[9]  Abraham Charnes,et al.  M.D. I. Estimation via Unconstrained Convex Programming. , 1980 .

[10]  Alfréd Rényi Wahrscheinlichkeitsrechnung : mit einem Anhang über Informationstheorie , 1979 .

[11]  P. Wolfe Algorithm for a least-distance programming problem , 1974 .

[12]  Shu-Cherng Fang,et al.  Quadratically constrained minimum cross-entropy analysis , 1989, Math. Program..

[13]  Michael A. Saunders,et al.  Large-scale linearly constrained optimization , 1978, Math. Program..

[14]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[15]  E. T. Jaynes,et al.  Where do we Stand on Maximum Entropy , 1979 .

[16]  T. Terlaky On lp programming , 1985 .

[17]  Patrick L. Brockett,et al.  Decomposition of superpositions of density functions and discrete distributions , 1977 .

[18]  Philip E. Gill,et al.  Practical optimization , 1981 .

[19]  R. Duffin,et al.  Optimization and insight by geometric programming , 1986 .

[20]  Philip Wolfe,et al.  Finding the nearest point in A polytope , 1976, Math. Program..

[21]  Shu-Cherng Fang,et al.  Controlled dual perturbations for posynomial programs , 1988 .

[22]  I. Csiszár $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .

[23]  Jay Rajasekera,et al.  Controlled dual perturbations for lp-programming , 1986, Z. Oper. Research.

[24]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .