ROAM: A Fundamental Routing Query on Road Networks with Efficiency

Novel road-network applications often recommend a moving object (e.g., a vehicle) about interesting services or tasks on its way to a destination. A taxi-sharing system, for instance, suggests a new passenger to a taxi while it is serving another one. The traveling cost is then shared among these passengers. A fundamental query is: given two nodes <inline-formula><tex-math notation="LaTeX">$s$</tex-math><alternatives><mml:math><mml:mi>s</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq1-2906188.gif"/></alternatives></inline-formula> and <inline-formula><tex-math notation="LaTeX">$t$</tex-math><alternatives><mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq2-2906188.gif"/></alternatives></inline-formula>, and an area <inline-formula><tex-math notation="LaTeX">$\mathcal {A}$</tex-math><alternatives><mml:math><mml:mi mathvariant="script">A</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq3-2906188.gif"/></alternatives></inline-formula> on road network graph <inline-formula><tex-math notation="LaTeX">$\mathcal {G}$</tex-math><alternatives><mml:math><mml:mi mathvariant="script">G</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq4-2906188.gif"/></alternatives></inline-formula>, is there a “good” route (e.g., short enough path) <inline-formula><tex-math notation="LaTeX">$P$</tex-math><alternatives><mml:math><mml:mi>P</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq5-2906188.gif"/></alternatives></inline-formula> from <inline-formula><tex-math notation="LaTeX">$s$</tex-math><alternatives><mml:math><mml:mi>s</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq6-2906188.gif"/></alternatives></inline-formula> to <inline-formula><tex-math notation="LaTeX">$t$</tex-math><alternatives><mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq7-2906188.gif"/></alternatives></inline-formula> that crosses <inline-formula><tex-math notation="LaTeX">$\mathcal {A}$</tex-math><alternatives><mml:math><mml:mi mathvariant="script">A</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq8-2906188.gif"/></alternatives></inline-formula> in <inline-formula><tex-math notation="LaTeX">$\mathcal {G}$</tex-math><alternatives><mml:math><mml:mi mathvariant="script">G</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq9-2906188.gif"/></alternatives></inline-formula>? In a taxi-sharing system, <inline-formula><tex-math notation="LaTeX">$s$</tex-math><alternatives><mml:math><mml:mi>s</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq10-2906188.gif"/></alternatives></inline-formula> and <inline-formula><tex-math notation="LaTeX">$t$</tex-math><alternatives><mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq11-2906188.gif"/></alternatives></inline-formula> can be a taxi's current and destined locations, and <inline-formula><tex-math notation="LaTeX">$\mathcal {A}$</tex-math><alternatives><mml:math><mml:mi mathvariant="script">A</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq12-2906188.gif"/></alternatives></inline-formula> contains all the places to which a person waiting for a taxi is willing to walk. Answering this <italic>Route and Area Matching</italic> (ROAM) Query allows the application involved to recommend appropriate services to users efficiently. In this paper, we examine efficient ROAM query algorithms. Particularly, we develop solutions for finding a <italic><inline-formula><tex-math notation="LaTeX">$\rho$</tex-math><alternatives><mml:math><mml:mi>ρ</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq13-2906188.gif"/></alternatives></inline-formula>-route</italic>, which is an <inline-formula><tex-math notation="LaTeX">$s$</tex-math><alternatives><mml:math><mml:mi>s</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq14-2906188.gif"/></alternatives></inline-formula>-<inline-formula><tex-math notation="LaTeX">$t$</tex-math><alternatives><mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq15-2906188.gif"/></alternatives></inline-formula> path that passes <inline-formula><tex-math notation="LaTeX">$\mathcal {A}$</tex-math><alternatives><mml:math><mml:mi mathvariant="script">A</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq16-2906188.gif"/></alternatives></inline-formula>, with a length of at most <inline-formula><tex-math notation="LaTeX">$(1+\rho)$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mi>ρ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="luo-ieq17-2906188.gif"/></alternatives></inline-formula> times the shortest distance between <inline-formula><tex-math notation="LaTeX">$s$</tex-math><alternatives><mml:math><mml:mi>s</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq18-2906188.gif"/></alternatives></inline-formula> and <inline-formula><tex-math notation="LaTeX">$t$</tex-math><alternatives><mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq19-2906188.gif"/></alternatives></inline-formula>. The existence of a <inline-formula><tex-math notation="LaTeX">$\rho$</tex-math><alternatives><mml:math><mml:mi>ρ</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq20-2906188.gif"/></alternatives></inline-formula>-route implies that a service or task located at <inline-formula><tex-math notation="LaTeX">$\mathcal {A}$</tex-math><alternatives><mml:math><mml:mi mathvariant="script">A</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq21-2906188.gif"/></alternatives></inline-formula> can be found for a given moving object <inline-formula><tex-math notation="LaTeX">$m$</tex-math><alternatives><mml:math><mml:mi>m</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq22-2906188.gif"/></alternatives></inline-formula>, and that <inline-formula><tex-math notation="LaTeX">$m$</tex-math><alternatives><mml:math><mml:mi>m</mml:mi></mml:math><inline-graphic xlink:href="luo-ieq23-2906188.gif"/></alternatives></inline-formula> only deviates slightly from its current route. We present comprehensive studies on index-free and index-based algorithms for answering ROAM queries. Comprehensive experiments show that our algorithm runs up to 30 times faster than baseline algorithms.

[1]  Yu Zheng,et al.  T-share: A large-scale dynamic taxi ridesharing service , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[2]  Shuigeng Zhou,et al.  Shortest path and distance queries on road networks: towards bridging theory and practice , 2013, SIGMOD '13.

[3]  Jeffrey Xu Yu,et al.  Finding time-dependent shortest paths over large graphs , 2008, EDBT '08.

[4]  Mohamed F. Mokbel,et al.  SHAREK: A Scalable Dynamic Ride Sharing System , 2015, 2015 16th IEEE International Conference on Mobile Data Management.

[5]  Chunyan Miao,et al.  Quality and Budget Aware Task Allocation for Spatial Crowdsourcing , 2015, AAMAS.

[6]  Yi Yang,et al.  Efficient Route Planning on Public Transportation Networks: A Labelling Approach , 2015, SIGMOD Conference.

[7]  Peter Sanders,et al.  In Transit to Constant Time Shortest-Path Queries in Road Networks , 2007, ALENEX.

[8]  Ruoming Jin,et al.  Large Scale Real-time Ridesharing with Service Guarantee on Road Networks , 2014, Proc. VLDB Endow..

[9]  Peter Sanders,et al.  Highway Hierarchies Hasten Exact Shortest Path Queries , 2005, ESA.

[10]  Lei Chen,et al.  gMission: A General Spatial Crowdsourcing Platform , 2014, Proc. VLDB Endow..

[11]  Yan Huang,et al.  Dynamic ridesharing , 2016, SIGSPACIAL.

[12]  Amos Fiat,et al.  Highway dimension, shortest paths, and provably efficient algorithms , 2010, SODA '10.

[13]  Hanan Samet,et al.  Path Oracles for Spatial Networks , 2009, Proc. VLDB Endow..

[14]  Kyriakos Mouratidis,et al.  Preventing Location-Based Identity Inference in Anonymous Spatial Queries , 2007, IEEE Transactions on Knowledge and Data Engineering.

[15]  Cyrus Shahabi,et al.  GeoCrowd: enabling query answering with spatial crowdsourcing , 2012, SIGSPATIAL/GIS.

[16]  Rolf H. Möhring,et al.  Fast Point-to-Point Shortest Path Computations with Arc-Flags , 2006, The Shortest Path Problem.

[17]  Cyrus Shahabi,et al.  A Framework for Protecting Worker Location Privacy in Spatial Crowdsourcing , 2014, Proc. VLDB Endow..

[18]  Sibo Wang,et al.  Reachability queries on large dynamic graphs: a total order approach , 2014, SIGMOD Conference.

[19]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[20]  Peter Sanders,et al.  Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks , 2008, WEA.

[21]  Jizhong Zhao,et al.  Reliable Diversity-Based Spatial Crowdsourcing by Moving Workers , 2014, Proc. VLDB Endow..

[22]  Lei Chen,et al.  GeoTruCrowd: trustworthy query answering with spatial crowdsourcing , 2013, SIGSPATIAL/GIS.

[23]  Hanan Samet,et al.  Scalable network distance browsing in spatial databases , 2008, SIGMOD Conference.

[24]  Hanan Samet,et al.  Efficient query processing on spatial networks , 2005, GIS '05.

[25]  Andrew V. Goldberg,et al.  Computing the shortest path: A search meets graph theory , 2005, SODA '05.

[26]  Yu Zheng,et al.  Real-Time City-Scale Taxi Ridesharing , 2015, IEEE Transactions on Knowledge and Data Engineering.