Electrochemical biosensors at the nanoscale.

The general mechanism of chemical sensing is based on molecular recognition linked to different transduction strategies based on electrochemical, optical, gravimetric or thermal effects that can convert the signal to digital information. Electrochemical sensors support accurate, fast, and inexpensive analytical methods with the advantages of being easily embedded and integrated into electronics, and having the greatest potential impact in the areas of healthcare, environmental monitoring (e.g. electronic noses), food packaging and many other applications (E. Bakker and Y. Qin, Anal. Chem., 2006, 78, 3965). Nanoscale electrochemical biosensors offer a new scope and opportunity in analytical chemistry. The reduction in the size of electrochemical biosensors to nanoscale dimensions expands their analytical capability, allowing the exploration of nanoscopic domains, measurements of local concentration profiles, detection in microfluidic systems and in vivo monitoring of neurochemical events by detection of stimulated dopamine release (R. Kennedy, L. Huang, M. Atkinson and P. Dush, Anal. Chem., 1993, 65, 1882). This article reviews both state of art developments in electrochemical nanosensing, and the industrial outlook.

[1]  R. Lal,et al.  A biosensor based on conducting polymers , 1992 .

[2]  R. Haddad,et al.  Ordered Two‐ and Three‐Dimensional Arrays Self‐Assembled from Water‐Soluble Nanocrystal–Micelles , 2005 .

[3]  Muhammad A. Alam,et al.  Screening-limited response of nanobiosensors. , 2007, Nano letters.

[4]  P. Bühlmann,et al.  Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. , 1998, Chemical reviews.

[5]  James F. Rusling,et al.  Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules , 2007, Advanced materials.

[6]  Joseph Wang,et al.  Stable and Sensitive Electrochemical Detection of Phenolic Compounds at Carbon Nanotube Modified Glassy Carbon Electrodes , 2003 .

[7]  Yuehe Lin,et al.  Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes , 2002 .

[8]  Charles M. Lieber,et al.  Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors , 2004 .

[9]  David R Walt,et al.  Very high density sensing arrays. , 2008, Chemical reviews.

[10]  D R Walt,et al.  High-density fiber-optic DNA random microsphere array. , 2000, Analytical chemistry.

[11]  Shengshui Hu,et al.  Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. , 2003, Analytical biochemistry.

[12]  Joseph Wang,et al.  Electrochemical biosensors: towards point-of-care cancer diagnostics. , 2006, Biosensors & bioelectronics.

[13]  A. Hierlemann,et al.  Higher-order Chemical Sensing , 2007 .

[14]  A. Erdem,et al.  Electrochemical Monitoring of DNA Hybridization by Multiwalled Carbon Nanotube Based Screen Printed Electrodes , 2008 .

[15]  Itamar Willner,et al.  Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[16]  I. Willner,et al.  A novel ISFET-based NAD+-dependent enzyme sensor for lactate , 2001 .

[17]  Joseph Wang Nanomaterial-based electrochemical biosensors. , 2005, The Analyst.

[18]  R. Kennedy,et al.  Amperometric monitoring of chemical secretions from individual pancreatic beta-cells. , 1993, Analytical chemistry.

[19]  B Danielsson,et al.  The region ion sensitive field effect transistor, a novel bioelectronic nanosensor. , 2007, Biosensors & bioelectronics.

[20]  H. Oka,et al.  Spontaneous immobilization of liposomes on electron-beam exposed resist surfaces. , 2005, Journal of the American Chemical Society.

[21]  N. Jaffrezic‐Renault,et al.  Enzyme biosensors based on ion-selective field-effect transistors. , 2006, Analytica chimica acta.

[22]  Hongwu Zhang,et al.  Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid. , 2004, Biosensors & bioelectronics.

[23]  Charles R. Martin,et al.  FABRICATION AND EVALUATION OF NANOELECTRODE ENSEMBLES , 1995 .

[24]  A. Fazzio,et al.  Designing real nanotube-based gas sensors. , 2008, Physical review letters.

[25]  Carina Dennis Companies vie to put all your genes on a chip , 2003, Nature.

[26]  Kenzo Maehashi,et al.  Single-walled carbon nanotube-arrayed microelectrode chip for electrochemical analysis , 2007 .

[27]  N. Chaniotakis,et al.  Carbon nanotube array-based biosensor , 2003, Analytical and bioanalytical chemistry.

[28]  A. Bard,et al.  Single molecule electrochemistry , 1996 .

[29]  Yanbin Li,et al.  Interdigitated Array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7. , 2004, Analytical chemistry.

[30]  Eric Lesniewska,et al.  Nano-pH sensor for the study of reactive materials. , 2007, Analytical chemistry.

[31]  Samuel Sánchez,et al.  Toward a fast, easy, and versatile immobilization of biomolecules into carbon nanotube/polysulfone-based biosensors for the detection of hCG hormone. , 2008, Analytical chemistry.

[32]  Gengfeng Zheng,et al.  Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays , 2006, Science.

[33]  M. Meyyappan,et al.  Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection , 2003 .

[34]  J. Merkert,et al.  Detection of DNA oligonucleotides on nanowire array electrodes using chronocoulometry , 2006 .

[35]  Chen-Zhong Li,et al.  Impedance sensing of DNA binding drugs using gold substrates modified with gold nanoparticles. , 2005, Analytical chemistry.

[36]  I. Willner,et al.  Cover Picture: Increasing the Complexity of Periodic Protein Nanostructures by the Rolling‐Circle‐Amplified Synthesis of Aptamers (Angew. Chem. Int. Ed. 1/2008) , 2008 .

[37]  J. Savéant,et al.  Ultramicroelectrodes for fast electrochemical kinetics , 1990 .

[38]  P. Kissinger,et al.  Voltammetry in brain tissue--a new neurophysiological measurement. , 1973, Brain research.

[39]  Biosensor with Oxide Nanowires , 2006, 2006 5th IEEE Conference on Sensors.

[40]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Juan Jiang,et al.  Nano-biosensor development for bacterial detection during human kidney infection: Use of glycoconjugate-specific antibody-bound gold NanoWire arrays (GNWA) , 2004, Glycoconjugate Journal.

[42]  Jun Liu,et al.  Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. , 2002, The Analyst.

[43]  I. Willner,et al.  Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA‐Sensors, and Enzyme Biosensors , 2003 .

[44]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[45]  P. Sheehan,et al.  Detection limits for nanoscale biosensors. , 2005, Nano letters.

[46]  R D O'Neill,et al.  Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in vivo. A review. , 1994, The Analyst.

[47]  Shana O Kelley,et al.  Amplified electrocatalysis at DNA-modified nanowires. , 2005, Nano letters.

[48]  Ari Ivaska,et al.  Electrochemical biosensors based on polyaniline , 2006 .

[49]  K. Loh,et al.  Electrochemical impedance sensing of DNA hybridization on conducting polymer film-modified diamond. , 2005, The journal of physical chemistry. B.

[50]  Luca Berdondini,et al.  Addressable nanoelectrode membrane arrays: fabrication and steady-state behavior. , 2007, Analytical chemistry.

[51]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[52]  Shana O Kelley,et al.  Ultrasensitive electrocatalytic DNA detection at two- and three-dimensional nanoelectrodes. , 2004, Journal of the American Chemical Society.

[53]  Jiri Janata,et al.  Thirty Years of CHEMFETs – A Personal View , 2004 .

[54]  Michael S Strano,et al.  On-chip micro gas chromatograph enabled by a noncovalently functionalized single-walled carbon nanotube sensor array. , 2008, Angewandte Chemie.

[55]  Meital Reches,et al.  Peptide nanotube-modified electrodes for enzyme-biosensor applications. , 2005, Analytical chemistry.

[56]  M. Meyyappan,et al.  Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays , 2003, Nanotechnology.

[57]  James R Heath,et al.  Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. , 2006, Journal of the American Chemical Society.

[58]  Mark A. Reed,et al.  Label-free immunodetection with CMOS-compatible semiconducting nanowires , 2007, Nature.

[59]  Yi-Tao Long,et al.  Electrochemical Investigations of M-DNA Self-Assembled Monolayers on Gold Electrodes , 2003 .

[60]  C. Dennis Developmental biology: Synthetic sex cells , 2003, Nature.

[61]  E. Tu,et al.  Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[62]  C. G. Zoski Ultramicroelectrodes: Design, Fabrication, and Characterization , 2002 .

[63]  H. Wolf,et al.  Nanoparticle printing with single-particle resolution. , 2007, Nature nanotechnology.

[64]  Zhiwei Zhu,et al.  Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. , 2005, Talanta.

[65]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[66]  J. Justin Gooding,et al.  Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing , 2005 .

[67]  Shana O Kelley,et al.  Electrocatalytic detection of pathogenic DNA sequences and antibiotic resistance markers. , 2003, Analytical chemistry.

[68]  Katherine J Odenthal,et al.  An introduction to electrochemical DNA biosensors. , 2007, The Analyst.

[69]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[70]  Joseph Wang,et al.  Glucose Biosensors: 40 Years of Advances and Challenges , 2001 .

[71]  Mei Gao,et al.  Biosensors Based on Aligned Carbon Nanotubes Coated with Inherently Conducting Polymers , 2003 .

[72]  Ernö Pretsch,et al.  Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. , 1997, Chemical reviews.

[73]  Charles M Lieber,et al.  Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Trevor J. Davies,et al.  The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory , 2005 .

[75]  Chunhai Fan,et al.  High-sensitivity pesticide detection via silicon nanowires-supported acetylcholinesterase-based electrochemical sensors , 2008 .

[76]  C. Mirkin,et al.  Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins , 2003, Science.

[77]  K. Besteman,et al.  Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors , 2003 .

[78]  Alexander Star,et al.  Electronic Detection of Specific Protein Binding Using Nanotube FET Devices , 2003 .

[79]  Martin Moskovits,et al.  Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size , 1991 .

[80]  Young Hee Lee,et al.  Electrochemical nanoneedle biosensor based on multiwall carbon nanotube. , 2006, Analytical chemistry.

[81]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[82]  Paolo Ugo,et al.  Direct voltammetry of cytochrome c at trace concentrations with nanoelectrode ensembles , 2003 .

[83]  Jun Li,et al.  The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays , 2004 .

[84]  Jongmin Kim,et al.  Well-oriented nanowell array metrics for integrated digital nanobiosensors , 2006 .

[85]  Robert Bogue Nanosensors: a review of recent progress , 2008 .

[86]  Christian Amatore,et al.  Electrochemical monitoring of single cell secretion: vesicular exocytosis and oxidative stress. , 2008, Chemical reviews.

[87]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[88]  Allen J. Bard,et al.  Digital Simulation of the Measured Electrochemical Response of Reversible Redox Couples at Microelectrode Arrays: Consequences Arising from Closely Spaced Ultramicroelectrodes , 1986 .

[89]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[90]  Role of grain boundaries in ZnO nanowire field-effect transistors , 2007 .