On the Degree of Ambiguity of Finite Automata

We investigate the ambiguity behavior of finite automata in connection with their inner structure. We show that the degree of ambiguity of a finitely ambiguous nondeterministic finite automaton (NFA) with n states is at most 5n2·nn. There is a simple criterion which characterizes the infinite degree of ambiguity of an NFA, and which is decidable in polynomial time. The degree of growth of the ambiguity of an NFA is computable in polynomial time. Starting from the first result, we discuss the maximal finite degree of ambiguity of an NFA with n states, and we present subclasses of NFAs where this quantity is of order 2Θ(n).

[1]  Michael A. Arbib,et al.  An Introduction to Formal Language Theory , 1988, Texts and Monographs in Computer Science.

[2]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[3]  Karel Culik,et al.  The Equivalence of Finite Valued Transducers (on HDTOL Languages) is Decidable , 1986, MFCS.

[4]  Tom Head,et al.  Automata That Recognize Intersections of Free Submonoids , 1977, Inf. Control..

[5]  Detlef Wotschke,et al.  Amounts of nondeterminism in finite automata , 1980, Acta Informatica.

[6]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[7]  Kosaburo Hashiguchi,et al.  Limitedness Theorem on Finite Automata with Distance Functions , 1982, J. Comput. Syst. Sci..

[8]  Oscar H. Ibarra,et al.  On Sparseness, Ambiguity and other Decision Problems for Acceptors and Transducers , 1986, STACS.

[9]  Helmut Seidl Deciding Equivalence of Finite Tree Automata , 1990, SIAM J. Comput..

[10]  Hing Leung An algebraic method for solving decision problems in finite automata theory , 1987 .

[11]  Oscar H. Ibarra,et al.  On the Finite-Valuedness Problem for Sequential Machines , 1983, Theor. Comput. Sci..

[12]  Yechezkel Zalcstein,et al.  The Burnside problem for semigroups , 1975 .

[13]  Oscar H. Ibarra,et al.  Relating the Type of Ambiguity of Finite Automata to the Succinctness of Their Representation , 1989, SIAM J. Comput..

[14]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[15]  Helmut Seidl,et al.  On finitely generated monoids of matrices with entries in N , 1991, RAIRO Theor. Informatics Appl..

[16]  Harry B. Hunt,et al.  On the Equivalence and Containment Problems for Unambiguous Regular Expressions, Regular Grammars and Finite Automata , 1985, SIAM J. Comput..

[17]  Imre Simon,et al.  On Finite Semigroups of Matrices , 1977, Theor. Comput. Sci..

[18]  Timothy V. Griffiths The unsolvability of the Equivalence Problem for Λ-Free nondeterministic generalized machines , 1968, JACM.

[19]  Gérard Jacob,et al.  Un Algorithme Calculant le Cardinal, Fini ou Infini, des Demi-Groupes de Matrices , 1977, Theor. Comput. Sci..