Visualizing Local Properties and Characteristic Structures of Dynamical Systems

A stand for a conventional rectilinearly shaped compact high-speed manual digital calculator is provided which is removably mountable on a table-top, desk-top or like planar support and skid resistant thereon. The stand includes a substantially rectilinear web having a first elevated end and a second descendent end contiguous to the planar support. Proximately underlying the second end of the web is a rail flange having upper and lower oblique surfaces corresponding to the angle of elevation of the web and providing a level mount therefor. Issuing generally upwardly from the second end of the web is a lip flange which provides a fixed support for a calculator overlying the web. Cooperating means are mounted in the surfaces of the stand that engage the support which render the stand substantially skid resistant thereon.

[1]  J. van Wijk,et al.  Spot noise texture synthesis for data visualization , 1991, SIGGRAPH.

[2]  David Banks,et al.  Image-guided streamline placement , 1996, SIGGRAPH.

[3]  Helwig Löffelmann,et al.  Enhancing the Visualization of Characteristic Structures in Dynamical Systems , 1998, Visualization in Scientific Computing.

[4]  Lisa K. Forssell,et al.  Using Line Integral Convolution for Flow Visualization: Curvilinear Grids, Variable-Speed Animation, and Unsteady Flows , 1995, IEEE Trans. Vis. Comput. Graph..

[5]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[6]  W. Ditto,et al.  Chaos: From Theory to Applications , 1992 .

[7]  Martin Rumpf,et al.  Characterizing global features of simulation data by selected local icons , 1996 .

[8]  Editors , 1986, Brain Research Bulletin.

[9]  Werner Purgathofer,et al.  Stream arrows: enhancing the use of stream surfaces for the visualization of dynamical systems , 1997, The Visual Computer.

[10]  D. A. Duce,et al.  Visualization in Scientific Computing , 1994, Focus on Computer Graphics.

[11]  Dietmar Saupe,et al.  Chaos and fractals - new frontiers of science , 1992 .

[12]  Werner Purgathofer,et al.  Animating flow fields: rendering of oriented line integral convolution , 1997, Proceedings. Computer Animation '97 (Cat. No.97TB100120).

[13]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[14]  David L. Kao,et al.  UFLIC: a line integral convolution algorithm for visualizing unsteady flows , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[15]  Andrew J. Hanson,et al.  Visualizing flow with quaternion frames , 1994, Proceedings Visualization '94.

[16]  James T. Kajiya,et al.  Rendering fur with three dimensional textures , 1989, SIGGRAPH.

[17]  Hans Hagen,et al.  Scientific Visualization: Overviews, Methodologies, and Techniques , 1997 .

[18]  Yvon Le Lous Report on the First Eurographics Workshop on Visualization in Scientific Computing , 1990 .

[19]  Lawrence J. Rosenblum,et al.  Scientific visualization : advances and challenges , 1994 .

[20]  Victoria Interrante,et al.  Strategies for effectively visualizing 3D flow with volume LIC , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[21]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[22]  E. Gröller,et al.  Fast oriented line integral convolution for vector field visualization via the Internet , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[23]  J. V. van Wijk Flow visualization with surface particles , 1993, IEEE Computer Graphics and Applications.

[24]  D. Schmalstieg,et al.  Collaborative augmented reality: exploring dynamical systems , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[25]  Lambertus Hesselink,et al.  Visualization of second order tensor fields and matrix data , 1992, Proceedings Visualization '92.

[26]  Al Globus,et al.  A tool for visualizing the topology of three-dimensional vector fields , 1991, Proceeding Visualization '91.

[27]  Werner Purgathofer,et al.  BABEL: A Generic Data structure for Geometric Modeling , 1996 .

[28]  William E. Lorensen,et al.  The stream polygon-a technique for 3D vector field visualization , 1991, Proceeding Visualization '91.

[29]  Helwig Löffelmann,et al.  GEOMETRY OF MIXED-MODE OSCILLATIONS IN THE 3-D AUTOCATALATOR , 1998 .

[30]  Penny Rheingans,et al.  Opacity-modulating triangular textures for irregular surfaces , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[31]  David N. Kenwright,et al.  A 3-D streamline tracking algorithm using dual stream functions , 1992, Proceedings Visualization '92.

[32]  Helwig Löffelmann,et al.  Hierarchical Streamarrows for the Visualization of Dynamical Systems , 1997, Visualization in Scientific Computing.

[33]  R. Abraham,et al.  Dynamics--the geometry of behavior , 1983 .

[34]  Michel Grave,et al.  Visualization in Scientific Computing ’97 , 1997, Eurographics.

[35]  H.-C. Hege,et al.  Interactive visualization of 3D-vector fields using illuminated stream lines , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[36]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[37]  David A. Lane UFAT-a particle tracer for time-dependent flow fields , 1994, Proceedings Visualization '94.

[38]  David A. Lane Visualization of time-dependent flow fields , 1993, Proceedings Visualization '93.

[39]  Frits H. Post,et al.  Visual Representation of Vector Fields Recent Developments and Research Directions , 1993 .

[40]  Theo van Walsum,et al.  Fluid Flow Visualization , 1991, Focus on Scientific Visualization.

[41]  Thaddeus Beier,et al.  Feature-based image metamorphosis , 1992, SIGGRAPH.

[42]  Nelson L. Max,et al.  Flow volumes for interactive vector field visualization , 1993, Proceedings Visualization '93.

[43]  Helwig Löffelmann,et al.  Visualizing Dynamical Systems near Critical Points , 1998 .

[44]  Jeff P. Hultquist,et al.  Constructing stream surfaces in steady 3D vector fields , 1992, Proceedings Visualization '92.

[45]  M. V. Dyke,et al.  An Album of Fluid Motion , 1982 .

[46]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[47]  Helwig Löffelmann,et al.  Local analysis of dynamical systems — concepts and interpretation , 1996 .

[48]  Hans-Christian Hege,et al.  Fast and resolution independent line integral convolution , 1995, SIGGRAPH.

[49]  Werner Purgathofer,et al.  VEGA: Vienna Environment for Graphics Applications , 1995 .

[50]  I N Bronstein,et al.  Taschenbuch der Mathematik , 1966 .

[51]  Thomas Frühauf,et al.  Raycasting vector fields , 1996, VIS '96.

[52]  Wilfrid Lefer,et al.  Creating Evenly-Spaced Streamlines of Arbitrary Density , 1997, Visualization in Scientific Computing.

[53]  Helwig Löffelmann,et al.  Visualizing Poincaré Maps together with the Underlying Flow , 1997, VisMath.

[54]  Victoria Interrante,et al.  Illustrating transparent surfaces with curvature-directed strokes , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[55]  Hans-Georg Pagendarm,et al.  Feature detection from vector quantities in a numerically simulated hypersonic flow field in combination with experimental flow visualization , 1994, Proceedings Visualization '94.

[56]  Nelson Max,et al.  Texture splats for 3D scalar and vector field visualization , 1993, Proceedings Visualization '93.

[57]  Helwig Löffelmann,et al.  DynSys3D: a workbench for developing advanced visualization techniques in the field of three-dimensional dynamical systems , 1997 .

[58]  Robert C. Beach,et al.  An Introduction to the Curves and Surfaces of Computer-Aided Design , 1991 .

[59]  J. V. van Wijk,et al.  A probe for local flow field visualization , 1993, Proceedings Visualization '93.

[60]  Hans Hagen,et al.  Streamball techniques for flow visualization , 1994, Proceedings Visualization '94.

[61]  Helwig Löffelmann,et al.  Fast Visualization of 2 D Dynamical Systems by the use of Virtual Ink Droplets , 1997 .

[62]  Clifford A. Pickover,et al.  Frontiers of scientific visualization , 1994 .

[63]  Jarke J. van Wijk,et al.  Enhanced Spot Noise for Vector Field Visualization , 1995, IEEE Visualization.

[64]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[65]  Theo van Walsum,et al.  Iconic techniques for feature visualization , 1995, Proceedings Visualization '95.

[66]  Wolfgang Straßer,et al.  Modeling and Visualization of Knitwear , 1995, IEEE Trans. Vis. Comput. Graph..

[67]  Lisa K. Forssell Visualizing flow over curvilinear grid surfaces using line integral convolution , 1994, Proceedings Visualization '94.

[68]  Wilfrid Lefer,et al.  The motion map: efficient computation of steady flow animations , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[69]  David C. Banks,et al.  Vortex tubes in turbulent flows: identification, representation, reconstruction , 1994, Proceedings Visualization '94.

[70]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[71]  Theo van Walsum,et al.  Feature Extraction and Iconic Visualization , 1996, IEEE Trans. Vis. Comput. Graph..

[72]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[73]  David C. Banks,et al.  Illumination in diverse codimensions , 1994, SIGGRAPH.