A Benchmark of Cryo-CMOS Embedded SRAM/DRAMs in 40-nm CMOS

The interface electronics needed for quantum processors require cryogenic CMOS (cryo-CMOS) embedded digital memories covering a wide range of specifications. To identify the optimum architecture for each specific application, this article presents a benchmark from room temperature (RT) down to 4.2 K of custom SRAMs/DRAMs in the same 40-nm CMOS process. To deal with the significant variations in device parameters at cryogenic temperatures, such as the increased threshold voltage, lower subthreshold leakage, and increased variability, the feasibility of different memories at cryogenic temperature is assessed and specific guidelines for cryogenic memory design are drafted. Unlike at RT, the 2T low-threshold-voltage (LVT) DRAM at 4.2 K is up to <inline-formula> <tex-math notation="LaTeX">$2\times $ </tex-math></inline-formula> more power efficient than both SRAMs for any access rate above 75 kHz since the lower leakage increases the retention time by <inline-formula> <tex-math notation="LaTeX">$40\,000\times $ </tex-math></inline-formula>, thus sharply cutting on the refresh power and showing the potential of cryo-CMOS DRAMs in cryogenic applications.

[1]  M. Babaie,et al.  A Cryo-CMOS DAC-Based 40-Gb/s PAM4 Wireline Transmitter for Quantum Computing , 2024, IEEE Journal of Solid-State Circuits.

[2]  F. Sebastiano,et al.  Cryogenic-Aware Forward Body Biasing in Bulk CMOS , 2024, IEEE Electron Device Letters.

[3]  F. Sebastiano,et al.  A Benchmark of Cryo-CMOS 40-nm Embedded SRAM/DRAMs for Quantum Computing , 2023, ESSCIRC 2023- IEEE 49th European Solid State Circuits Conference (ESSCIRC).

[4]  Victor M. van Santen,et al.  Cryogenic CMOS for Quantum Processing: 5-nm FinFET-Based SRAM Arrays at 10 K , 2023, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Y. Ha,et al.  CSDB-eDRAM: A 16Kb Energy-Efficient 4T CSDB Gain Cell eDRAM with over 16.6s Retention Time and 49.23uW/Kb at 4.2K for Cryogenic Computing , 2023, 2023 IEEE International Symposium on Circuits and Systems (ISCAS).

[6]  B. Kaczer,et al.  Understanding the Excess 1/f Noise in MOSFETs at Cryogenic Temperatures , 2023, IEEE Transactions on Electron Devices.

[7]  Matthew James Peter Walker,et al.  Cryo-Computing for Infrastructure Applications: A Technology-to-Microarchitecture Co-optimization Study , 2022, 2022 International Electron Devices Meeting (IEDM).

[8]  Brian P. Gaucher,et al.  A Cryo-CMOS Low-Power Semi-Autonomous Transmon Qubit State Controller in 14-nm FinFET Technology , 2022, IEEE Journal of Solid-State Circuits.

[9]  F. Sebastiano,et al.  Cryogenic Comparator Characterization and Modeling for a Cryo-CMOS 7b 1-GSa/s SAR ADC , 2022, ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC).

[10]  C. Menolfi,et al.  A cryogenic SRAM based arbitrary waveform generator in 14 nm for spin qubit control , 2022, ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC).

[11]  J. Kulkarni,et al.  Cryo-TRAM: Gated Thyristor based Capacitor-less DRAM for Cryogenic Computing , 2022, 2022 Device Research Conference (DRC).

[12]  A. Raychowdhury,et al.  Multi-bit per-cell 1T SiGe Floating Body RAM for Cache Memory in Cryogenic Computing , 2022, 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits).

[13]  Moinuddin K. Qureshi,et al.  AFS: Accurate, Fast, and Scalable Error-Decoding for Fault-Tolerant Quantum Computers , 2022, 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA).

[14]  A. Chasin,et al.  Temperature Dependent Mismatch and Variability in a Cryo-CMOS Array with 30k Transistors , 2022, IEEE International Reliability Physics Symposium.

[15]  Cody Jones,et al.  LILLIPUT: a lightweight low-latency lookup-table decoder for near-term Quantum error correction , 2022, ASPLOS.

[16]  F. Sebastiano,et al.  Neural-Network Decoders for Quantum Error Correction Using Surface Codes: A Space Exploration of the Hardware Cost-Performance Tradeoffs , 2022, IEEE Transactions on Quantum Engineering.

[17]  A. Teman,et al.  Embedded Memories for Cryogenic Applications , 2021, Electronics.

[18]  A. Raychowdhury,et al.  Pseudo-Static 1T Capacitorless DRAM using 22nm FDSOI for Cryogenic Cache Memory , 2021, 2021 IEEE International Electron Devices Meeting (IEDM).

[19]  S. Datta,et al.  Scaled Back End of Line Interconnects at Cryogenic Temperatures , 2021, IEEE Electron Device Letters.

[20]  V. Hu,et al.  Static Noise Margin Analysis for Cryo-CMOS SRAM Cell , 2021, 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).

[21]  A. Teman,et al.  Gain-Cell Embedded DRAM Under Cryogenic Operation—A First Study , 2021, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[22]  Jangwoo Kim,et al.  CryoGuard: A Near Refresh-Free Robust DRAM Design for Cryogenic Computing , 2021, 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA).

[23]  Liujiang Yu,et al.  Designing EDA-Compatible Cryogenic CMOS Platform for Quantum Computing Applications , 2021, 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM).

[24]  Suman Datta,et al.  CryoMem: A 4K-300K 1.3GHz eDRAM Macro with Hybrid 2T-Gain-Cell in a 28nm Logic Process for Cryogenic Applications , 2021, 2021 IEEE Custom Integrated Circuits Conference (CICC).

[25]  Yemin Dong,et al.  Cryogenic Characteristics of Multinanoscales Field-Effect Transistors , 2021, IEEE Transactions on Electron Devices.

[26]  Avi Goldfarb,et al.  Commercial applications of quantum computing , 2021, EPJ Quantum Technology.

[27]  Shimeng Yu,et al.  Cryogenic Benchmarks of Embedded Memory Technologies for Recurrent Neural Network based Quantum Error Correction , 2020, 2020 IEEE International Electron Devices Meeting (IEDM).

[28]  Edoardo Charbon,et al.  A Scalable Cryo-CMOS Controller for the Wideband Frequency-Multiplexed Control of Spin Qubits and Transmons , 2020, IEEE Journal of Solid-State Circuits.

[29]  Jakub Marecek,et al.  Quantum Computing for Finance: State-of-the-Art and Future Prospects , 2020, IEEE Transactions on Quantum Engineering.

[30]  C. Diaz,et al.  Cold CMOS as a Power-Performance-Reliability Booster for Advanced FinFETs , 2020, 2020 IEEE Symposium on VLSI Technology.

[31]  Jangwoo Kim,et al.  CryoCore: A Fast and Dense Processor Architecture for Cryogenic Computing , 2020, 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).

[32]  Jangwoo Kim,et al.  CryoCache: A Fast, Large, and Cost-Effective Cache Architecture for Cryogenic Computing , 2020, ASPLOS.

[33]  Byung-Gook Park,et al.  Characterization of a Capacitorless DRAM Cell for Cryogenic Memory Applications , 2019, IEEE Electron Device Letters.

[34]  Koen Bertels,et al.  A control microarchitecture for fault-tolerant quantum computing , 2019, Microprocess. Microsystems.

[35]  Jangwoo Kim,et al.  Cryogenic Computer Architecture Modeling with Memory-Side Case Studies , 2019, 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA).

[36]  Harald Homulle,et al.  Cryogenic electronics for the read-out of quantum processors , 2019 .

[37]  Gary B. Bronner,et al.  Some Like It Cold: Initial Testing Results for Cryogenic Computing Components , 2019, Journal of Physics: Conference Series.

[38]  Thomas Vogelsang,et al.  DRAM Retention at Cryogenic Temperatures , 2018, 2018 IEEE International Memory Workshop (IMW).

[39]  E. Charbon,et al.  Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures , 2018, IEEE Journal of the Electron Devices Society.

[40]  Arnout Beckers,et al.  Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K , 2018, IEEE Journal of the Electron Devices Society.

[41]  Sally A. McKee,et al.  Do superconducting processors really need cryogenic memories?: the case for cold DRAM , 2017, MEMSYS.

[42]  Moinuddin K. Qureshi,et al.  Cryogenic-DRAM based memory system for scalable quantum computers: a feasibility study , 2017, MEMSYS.

[43]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[44]  Lin Song,et al.  Cryo-CMOS electronic control for scalable quantum computing , 2017, 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC).

[45]  Nobuyuki Yoshikawa,et al.  Josephson-CMOS Hybrid Memory With Nanocryotrons , 2017, IEEE Transactions on Applied Superconductivity.

[46]  Yuki Yamanashi,et al.  Fully Functional Operation of Low-Power 64-kb Josephson-CMOS Hybrid Memories , 2017, IEEE Transactions on Applied Superconductivity.

[47]  G. Ghibaudo,et al.  Physics and performance of nanoscale semiconductor devices at cryogenic temperatures , 2017 .

[48]  A. Montanaro Quantum algorithms: an overview , 2015, npj Quantum Information.

[49]  Hanwool Jeong,et al.  Comparative Study of Various Latch-Type Sense Amplifiers , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[50]  Xiaofan Meng,et al.  64-kb Hybrid Josephson-CMOS 4 Kelvin RAM With 400 ps Access Time and 12 mW Read Power , 2013, IEEE Transactions on Applied Superconductivity.

[51]  Y. Yamanashi,et al.  Design and Implementation of 64-kb CMOS Static RAMs for Josephson-CMOS Hybrid Memories , 2013, IEEE Transactions on Applied Superconductivity.

[52]  Chris H. Kim,et al.  A 3T Gain Cell Embedded DRAM Utilizing Preferential Boosting for High Density and Low Power On-Die Caches , 2011, IEEE Journal of Solid-State Circuits.

[53]  Ariel J. Feldman,et al.  Lest we remember: cold-boot attacks on encryption keys , 2008, CACM.

[54]  Feng Lin,et al.  DRAM Circuit Design: Fundamental and High-Speed Topics , 2007 .

[55]  T. Van Duzer,et al.  Latency and Power Measurements on a 64-kb Hybrid Josephson-CMOS Memory , 2007, IEEE Transactions on Applied Superconductivity.

[56]  S. Whiteley,et al.  Characterization of 4 K CMOS devices and circuits for hybrid Josephson-CMOS systems , 2005, IEEE Transactions on Applied Superconductivity.

[57]  T. Van Duzer,et al.  Simulation and measurements on a 64-kbit hybrid Josephson-CMOS memory , 2005, IEEE Transactions on Applied Superconductivity.

[58]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[59]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[60]  Y. Taur,et al.  A 4 Mb Low-temperature DRAM , 1991, 1991 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[61]  Richard C. Jaeger,et al.  Quasi-static RAM design for high performance operation at liquid nitrogen temperature , 1990 .

[62]  Keith A. Jenkins,et al.  A 12-ns low-temperature DRAM , 1989 .

[63]  R. Anderson,et al.  Low-temperature operation of silicon dynamic random-access memories , 1989 .

[64]  J.Y.-C. Sun,et al.  A 3.5 ns/77 K and 6.2 ns/300 K 64 K CMOS RAM with ECL interfaces , 1989 .

[65]  W. M. Regitz,et al.  A three transistor-cell, 1024-bit, 500 NS MOS RAM , 1970 .

[66]  E. Charbon,et al.  Characterization and Modeling of Mismatch in Cryo-CMOS , 2020, IEEE Journal of the Electron Devices Society.

[67]  B. Parvais,et al.  Physical Model of Low-Temperature to Cryogenic Threshold Voltage in MOSFETs , 2020, IEEE Journal of the Electron Devices Society.

[68]  Edoardo Charbon,et al.  Cryo-CMOS Circuits and Systems for Quantum Computing Applications , 2018, IEEE Journal of Solid-State Circuits.

[69]  G. Ghibaudo,et al.  Source/drain induced defects in advanced MOSFETs: what device electrical characterization tells , 2014 .

[70]  Yuki Yamanashi,et al.  Investigation of robust CMOS amplifiers for Josephson- CMOS hybrid memories , 2012 .