Anti-Synchronization of two Different Chaotic Systems via Optimal Control with Fully Unknown Parameters *

This paper presents anti-synchronization of two different chaotic systems using optimal control method. The proposed technique is applied to achieve chaos anti-synchronization for the new four- dimensional and hyperchaotic Lu systems with fully unknown parameters. Numerical simulations results are presented to demonstrate the effectiveness of the method.

[1]  Awad El-Gohary,et al.  Optimal synchronization of Rössler system with complete uncertain parameters , 2006 .

[2]  Wenlin Li,et al.  Anti-synchronization of two different chaotic systems , 2008 .

[3]  Yuxiang Chen,et al.  Lag synchronization of structurally nonequivalent chaotic systems with time delays , 2007 .

[4]  Y. Lai,et al.  Observability of lag synchronization of coupled chaotic oscillators. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Guo-Hui Li,et al.  Anti-synchronization in different chaotic systems , 2007 .

[6]  J. Kurths,et al.  Phase Synchronization of Chaotic Oscillators by External Driving , 1997 .

[7]  Mohammad Haeri,et al.  Anti-Synchronization of two Different Chaotic Systems via Active Control , 2007 .

[8]  Guohui Li,et al.  An observer-based anti-synchronization , 2006 .

[9]  Z. Guan,et al.  Generalized synchronization of continuous chaotic system , 2006 .

[10]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[11]  Louis M. Pecora,et al.  Synchronizing chaotic systems , 1993, Optics & Photonics.

[12]  Li Guo-Hui Synchronization and anti-synchronization of Colpitts oscillators using active control , 2005 .

[13]  Ljupco Kocarev,et al.  Generalized synchronization in chaotic systems , 1995, Optics East.

[14]  S. S. Yang,et al.  Generalized Synchronization in Chaotic Systems , 1998 .

[15]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[16]  T. Liao,et al.  Anti-synchronization of uncertain unified chaotic systems with dead-zone nonlinearity , 2008 .

[17]  K.Murali,et al.  Secure communication using a compound signal from generalized synchronizable chaotic systems , 1997, chao-dyn/9709025.

[18]  Shihua Chen,et al.  Adaptive control for anti-synchronization of Chua's chaotic system , 2005 .

[19]  Simin Yu,et al.  Generating hyperchaotic Lü attractor via state feedback control , 2006 .

[20]  Chuandong Li,et al.  Lag synchronization of hyperchaos with application to secure communications , 2005 .

[21]  Henk Nijmeijer,et al.  An observer for phase synchronization of chaos , 2001 .

[22]  Awad I. El-Gohary,et al.  Optimal control of Lorenz system during different time intervals , 2003, Appl. Math. Comput..

[23]  Guanrong Chen,et al.  On a four-dimensional chaotic system , 2005 .

[24]  Parlitz,et al.  Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. , 1996, Physical review letters.