A Physically Based Percolation Model of the Effective Electrical Conductivity of Particle Filled Composites

The fundamental mechanism of the non-universality of exponent t in the classical percolation equation is discussed on the basis of the comparison of lattice percolation and continuum percolation systems in the present study. The intrinsic universality of percolation exponents is revealed by analyzing the power-law percolation relationship between two different scales (microstructure and macroscopic properties). In view that the classical percolation equation with fitting parameters lacks a clear correlation to the microstructure features, a physically based percolation model is proposed to characterize the effective electrical conductivity of particle filled composites by means of the combination of effective medium (EM) and percolation equations with universal exponents. It is shown that the present model agrees well with the experimental data. Furthermore, the effect of particle shape on the percolation threshold and the effect of electrical conductivity of particle on the effective properties of composites are discussed.

[1]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[2]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[3]  Wen-Zhong Cai,et al.  Thermal Conductivity of PTFE Composites with Three-dimensional Randomly Distributed Fillers , 2005 .

[4]  Xiang Ling,et al.  Numerical Simulation of Saturation Behavior of Physical Properties in Composites with Randomly Distributed Second-phase , 2005 .

[5]  Douglas H. McQueen,et al.  Multiple threshold percolation in polymer/filler composites , 2004 .

[6]  Q. Xue The influence of particle shape and size on electric conductivity of metal–polymer composites , 2004 .

[7]  I. Balberg,et al.  Electrical-thermal switching in carbon-black-polymer composites as a local effect. , 2003, Physical review letters.

[8]  I. Balberg,et al.  Tunneling and percolation in metal-insulator composite materials , 2003, cond-mat/0306059.

[9]  T. Maeder,et al.  Critical behaviour of the piezoresistive response in RuO2-glass composites , 2002, cond-mat/0212319.

[10]  Shangdong Tu,et al.  Thermal Conductivities of PTFE Composites with Random Distributed Graphite Particles , 2002 .

[11]  I. Youngs,et al.  Exploring the universal nature of electrical percolation exponents by genetic algorithm fitting with general effective medium theory , 2002 .

[12]  C. Brosseau Generalized effective medium theory and dielectric relaxation in particle-filled polymeric resins , 2002 .

[13]  L. Lan,et al.  The effect of particle size on electric conducting percolation threshold in polymer/conducting particle composites , 2000 .

[14]  I. Bloom,et al.  CRITICAL BEHAVIOR OF THE ELECTRICAL TRANSPORT PROPERTIES IN A TUNNELING-PERCOLATION SYSTEM , 1999 .

[15]  I. Balberg,et al.  Limits on the continuum-percolation transport exponents , 1998 .

[16]  J. Wu,et al.  Percolation exponents and threshold in two nearly ideal anisotropic continuum systems , 1997 .

[17]  K. Yoshino,et al.  Preparation and Electrical Properties of Conducting Polyaniline-Polycarbonate Composite Films , 1997 .

[18]  K. Yoshino,et al.  Electrical Conduction near Percolation Threshold in Polymer Composite Containing Conducting Polypyrrole-Coated Insulating Polymer Fiber , 1996 .

[19]  Heaney Measurement and interpretation of nonuniversal critical exponents in disordered conductor-insulator composites. , 1995, Physical review. B, Condensed matter.

[20]  Snyder,et al.  Geometrical percolation threshold of overlapping ellipsoids. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  I. Jacobs,et al.  The influence of particle shape on dielectric enhancement in metal-insulator composites , 1992 .

[22]  S. Nagai,et al.  Thermal conductivity of a polyethylene filled with disoriented short‐cut carbon fibers , 1991 .

[23]  S. Havlin,et al.  Diffusion in disordered media , 1991 .

[24]  S. Yoon,et al.  Possible breakdown of the universality of the conductivity critical exponent in an anisotropic percolation system , 1990 .

[25]  R. Newnham,et al.  Electrical Resistivity of Composites , 1990 .

[26]  D. McLachlan,et al.  The complex permittivity of emulsions: An effective media-percolation equation , 1989 .

[27]  D. McLachlan Measurement and analysis of a model dual conductivity medium using a generalized effective medium theory , 1989 .

[28]  D. McLachlan,et al.  The analysis of the electrical conductivity of graphite conductivity of graphite powders during compaction , 1988 .

[29]  Balberg,et al.  Tunneling and nonuniversal conductivity in composite materials. , 1987, Physical review letters.

[30]  Pierre Delhaes,et al.  Piezoresistivity of heterogeneous solids , 1987 .

[31]  Sen,et al.  Nonuniversal critical exponents for transport in percolating systems with a distribution of bond strengths. , 1985, Physical review. B, Condensed matter.

[32]  Feng,et al.  Differences between lattice and continuum percolation transport exponents. , 1985, Physical review letters.

[33]  Harrison,et al.  Measurement of elasticity and conductivity of a three-dimensional percolation system. , 1985, Physical review letters.

[34]  K. Mendelson,et al.  Percolation in two-dimensional, macroscopically anisotropic systems , 1980 .

[35]  J. Straley,et al.  Distribution-induced non-universality of the percolation conductivity exponents , 1979 .

[36]  Ping Sheng,et al.  Structural and electrical properties of granular metal films , 1975 .

[37]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[38]  S. Torquato Random Heterogeneous Materials , 2002 .

[39]  C. Nan Physics of inhomogeneous inorganic materials , 1993 .

[40]  Feng,et al.  Transport properties of continuum systems near the percolation threshold. , 1987, Physical review. B, Condensed matter.

[41]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen , 1937 .

[42]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[43]  J. Maxwell A Treatise on Electricity and Magnetism: Frontmatter , 1873 .