Construction of PZT-5H mechano-electric model based on strain rate dependence and its numerical simulation in overload igniter application

[1]  Enling Tang,et al.  Experimental simulation of self-powered overload igniter based on Lead Zirconate Titanate , 2020 .

[2]  Enling Tang,et al.  Electromechanical behaviors of soft and hard PZTs under different compressive stress pulses , 2020 .

[3]  Bing Zhao,et al.  A nonlinear uniaxial stress-strain constitutive model for viscoelastic membrane materials , 2020 .

[4]  Z. Li,et al.  Damage of permanent magnets in the electromagnetic buffer under intensive impact load , 2020 .

[5]  Muhammad Bilawal Khan,et al.  A Piezoelectric Harvesting Interface with Capacitive Partial Electric Charge Extraction for Energy Harvesting from Irregular High-Voltage Input , 2020, Energies.

[6]  F. Zhang,et al.  Mechanical-electric response characteristics of 1-3 cement based piezoelectric composite under impact loading , 2019 .

[7]  L. Malgaca,et al.  Hybrid vibration control of a flexible composite box cross-sectional manipulator with piezoelectric actuators , 2019, Composites Part B: Engineering.

[8]  Satish Chandra Jain,et al.  Experimental and Theoretical Investigations of Electromagnetic Radiation Emission from Soft and Hard PZT Ceramics , 2019, Journal of Electronic Materials.

[9]  M. Heyns,et al.  Positive non-linear capacitance: the origin of the steep subthreshold-slope in ferroelectric FETs , 2019, Scientific Reports.

[10]  Shaoxiong Xie,et al.  Ferroelastic domain switching and R ‐curve behavior in lead zirconate titanate (Zr/Ti = 52/48)‐based ferroelectric ceramics , 2019, Journal of the American Ceramic Society.

[11]  A. Burkhanov,et al.  Electrophysical and mechanical properties of PZT-based soft ferroelectric material in wide range of temperatures , 2019, Ferroelectrics.

[12]  J. Koruza,et al.  Ferroelastic Properties of PZT: Characterization Under Compressive and Tensile Stress, Finite-Element Simulation, and Lifetime Calculation , 2018, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[13]  Genshui Wang,et al.  Mechanical induced electrical failure of shock compressed PZT95/5 ferroelectric ceramics , 2017 .

[14]  Juhyun Yoo,et al.  High piezoelectric d31 coefficient and high Tc in PMW-PNN-PZT ceramics sintered at low temperature , 2017 .

[15]  W. Proud,et al.  Temperature and strain rate effects on the piezoelectric charge production of PZT 95/5 , 2017 .

[16]  Yuancheng Sun,et al.  Performance evaluation of high g accelerometers , 2013 .

[17]  K. Khan,et al.  A variational constitutive framework for the nonlinear viscoelastic response of a dielectric elastomer , 2013 .

[18]  K. Liu,et al.  Experimental research on dynamic mechanical properties of PZT ceramic under hydrostatic pressure , 2011 .

[19]  P. Woias,et al.  Assessing the elastostriction and the electrostriction parameter of bulk PZT ceramics , 2010 .

[20]  Chad M. Landis,et al.  Non-linear constitutive modeling of ferroelectrics , 2004 .

[21]  Christopher S. Lynch,et al.  NONLINEAR CONSTITUTIVE BEHAVIOR OF SOFT AND HARD PZT: EXPERIMENTS AND MODELING , 1999 .

[22]  Marc Kamlah,et al.  Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics , 1999 .

[23]  Christopher S. Lynch,et al.  Ferroelectric/ferroelastic interactions and a polarization switching model , 1995 .

[24]  M. Boyce,et al.  A constitutive model for the nonlinear viscoelastic viscoplastic behavior of glassy polymers , 1995 .

[25]  Anthony G. Evans,et al.  Nonlinear Deformation of Ferroelectric Ceramics , 1993 .

[26]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[27]  Z. Li,et al.  Piezoelectrically‐induced switching of 90° domains in tetragonal BaTiO3 and PbTiO3 investigated by micro‐Raman spectroscopy , 1992 .

[28]  E. P. Fahrenthold,et al.  A continuum damage model for fracture of brittle solids under dynamic loading , 1991 .

[29]  H. Kolsky An Investigation of the Mechanical Properties of Materials at very High Rates of Loading , 1949 .