From vortex molecules to the Abrikosov lattice in thin mesoscopic superconducting disks

Stable vortex states are studied in large superconducting thin disks (for numerical purposes we considered with radius R = 50 \xi). Configurations containing more than 700 vortices were obtained using two different approaches: the nonlinear Ginzburg-Landau (GL) theory and the London approximation. To obtain better agreement with results from the GL theory we generalized the London theory by including the spatial variation of the order parameter following Clem's ansatz. We find that configurations calculated in the London limit are also stable within the Ginzburg-Landau theory for up to ~ 230 vortices. For large values of the vorticity (typically, L > 100), the vortices are arranged in an Abrikosov lattice in the center of the disk, which is surrounded by at least two circular shells of vortices. A Voronoi construction is used to identify the defects present in the ground state vortex configurations. Such defects cluster near the edge of the disk, but for large L also grain boundaries are found which extend up to the center of the disk.

[1]  F. M. Peeters,et al.  Dependence of the vortex configuration on the geometry of mesoscopic flat samples , 2002 .

[2]  A. Ceulemans,et al.  Vortex entry and nucleation of antivortices in a mesoscopic superconducting triangle. , 2001, Physical review letters.

[3]  John Bardeen,et al.  Theory of the Motion of Vortices in Superconductors , 1965 .

[4]  F. M. Peeters,et al.  Vortex Phase Diagram for Mesoscopic Superconducting Disks , 1998 .

[5]  F. Peeters,et al.  Structure and spectrum of two-dimensional clusters confined in a hard wall potential. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  I Lin,et al.  Packings and defects of strongly coupled two-dimensional Coulomb clusters: numerical simulation. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  F. M. Peeters,et al.  MAGNETIZATION OF MESOSCOPIC SUPERCONDUCTING DISKS , 1997, cond-mat/9707018.

[8]  J. Clem,et al.  Simple model for the vortex core in a type II superconductor , 1975 .

[9]  Valerii M. Vinokur,et al.  Vortex states and magnetization curve of square mesoscopic superconductors , 2002 .

[10]  A. Buzdin,et al.  Electrostatic analogies in the problems of vortex–defect interactions , 2000 .

[11]  David R. Nelson,et al.  Theory of Two-Dimensional Melting , 1978 .

[12]  A. Geim,et al.  Non-quantized penetration of magnetic field in the vortex state of superconductors , 2000, Nature.

[13]  F. Peeters,et al.  Vortex shells in mesoscopic superconducting disks , 2004 .

[14]  Peeters,et al.  Ordering and phase transitions of charged particles in a classical finite two-dimensional system. , 1994, Physical review. B, Condensed matter.

[15]  N. D. Mermin,et al.  Crystalline Order in Two Dimensions , 1968 .

[16]  J. Brison,et al.  VORTEX STRUCTURES IN SMALL SUPERCONDUCTING DISKS , 1994 .

[17]  Peeters,et al.  Spectral properties of classical two-dimensional clusters. , 1995, Physical review. B, Condensed matter.

[18]  A. Buzdin,et al.  Electromagnetic pinning of vortices on different types of defects , 1998 .

[19]  B. I. Shklovskii,et al.  Charging spectrum and configurations of a Wigner crystal island , 1998 .

[20]  F. Peeters,et al.  Phase transitions in thin mesoscopic superconducting disks , 1998 .

[21]  L. Landau,et al.  On the theory of superconductivity , 1955 .

[22]  J. Aguiar,et al.  Flux penetration, matching effect, and hysteresis in homogeneous superconducting films , 2001 .

[23]  D. Reefman,et al.  Numerical simulations on two dimensional vortex lattices , 1991 .

[24]  Ernst Helmut Brandt,et al.  The flux-line lattice in superconductors , 1995, supr-con/9506003.

[25]  V. Moshchalkov,et al.  Vortices in physics , 2002 .

[26]  Properties of the ideal Ginzburg-Landau vortex lattice , 2003, cond-mat/0304237.

[27]  Victor V. Moshchalkov,et al.  Symmetry-induced formation of antivortices in mesoscopic superconductors , 2000, Nature.

[28]  P. Gennes,et al.  Onset of superconductivity in decreasing fields , 1963 .

[29]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[30]  A. Abrikosov The magnetic properties of superconducting alloys , 1957 .

[31]  A. Fetter Flux penetration in a thin superconducting disk , 1980 .

[32]  P. Hohenberg,et al.  Mixed state of thin superconducting films in perpendicular fields , 1967 .

[33]  J. Pearl,et al.  CURRENT DISTRIBUTION IN SUPERCONDUCTING FILMS CARRYING QUANTIZED FLUXOIDS , 1964 .

[34]  Enomoto,et al.  Effects of the surface boundary on the magnetization process in type-II superconductors. , 1993, Physical review. B, Condensed matter.

[35]  F. Peeters,et al.  Vortex structure of thin mesoscopic disks with enhanced surface superconductivity , 2000 .

[36]  C. E. Wieman,et al.  Vortices in a Bose Einstein condensate , 1999, QELS 2000.

[37]  F. M. Peeters,et al.  Saddle-point states and energy barriers for vortex entrance and exit in superconducting disks and rings , 2001 .

[38]  Brandt Square and rectangular thin superconductors in a transverse magnetic field. , 1995, Physical review letters.

[39]  E. Brandt Precision Ginzburg-Landau Solution of Ideal Vortex Lattices for Any Induction and Symmetry , 1997 .