Change in thermal conductivity of cylindrical silicon nanowires induced by surface bonding modification

The impact of bond order loss of surface atoms on thermal conductivity of cylindrical silicon nanowires has been examined using the isotropic elastic continuum model. A core-shell structure with a modified Young’s modulus in the surface skin of the wire has been used. Thermal conductivity is calculated from modified phonon dispersion relations based on recent developed bond-order-length-strength (BOLS) correlation. This work extends the previous linear approximation [Yeung et al. Phys. Rev. B 74, 155317 (2006)] to calculate the phonon dispersion relation of torsional mode and longitudinal mode using the nonlinear approach. A significant increase in thermal conductivity is found compared to the case without using BOLS correlation.

[1]  T. C. Chiam,et al.  Effect of surface bond-order loss on the dc conductance of a metallic nanosolid , 2005 .

[2]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[3]  Chang Q. Sun,et al.  Impact of bond order loss on surface and nanosolid mechanics. , 2005, The journal of physical chemistry. B.

[4]  Michael A. Stroscio,et al.  Acoustic phonon quantization in buried waveguides and resonators , 1996 .

[5]  N. Mingo,et al.  Lattice thermal conductivity crossovers in semiconductor nanowires. , 2004, Physical review letters.

[6]  Alexander A. Balandin,et al.  Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well , 1998 .

[7]  Julian D. Gale,et al.  An analytical model for the thermal conductivity of silicon nanostructures , 2005 .

[8]  D. W. K. Wong,et al.  Impact of surface bond-order loss on phonon dispersion relations and thermal conductivity of cylindrical Si nanowires , 2006 .

[9]  A. Majumdar,et al.  Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization , 2001 .

[10]  Huaqing Xie,et al.  Measuring the thermal conductivity of a single carbon nanotube. , 2005, Physical review letters.

[11]  Chang Q. Sun,et al.  Melting point oscillation of a solid over the whole range of sizes , 2005 .

[12]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[13]  Mehdi Asheghi,et al.  Thermal Conductivity Measurements of Ultra-Thin Single Crystal Silicon Layers , 2006 .

[14]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[15]  S. Mátéfi-Tempfli,et al.  Conductance quantization in magnetic nanowires electrodeposited in nanopores , 2002 .

[16]  M. Kaviany Role of Phonon Dispersion in Lattice Thermal Conductivity Modeling role of phonon dispersion in the prediction of the thermal conductivity of germanium , 2004 .

[17]  Wenxia Li,et al.  Phonon heat transport through periodically stubbed waveguides , 2006 .

[18]  A. Majumdar,et al.  Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity , 2005 .

[19]  Y. Yamamoto,et al.  A single-photon turnstile device , 1999, Nature.

[20]  Ali Shakouri,et al.  Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices , 2002 .

[21]  N. Mingo Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations , 2003 .

[22]  Eugene E. Haller,et al.  Thermal conductivity of germanium crystals with different isotopic compositions , 1997 .