Memory Efficient Methods for Eulerian Free Surface Fluid Animation

This thesis focuses on improving and extending the available toolset for Eulerian, i.e. grid based, free surface fluid animation and level set based surface tracking in the context of computer grap ...

[1]  J. Anderson,et al.  Computational fluid dynamics : the basics with applications , 1995 .

[2]  Keenan Crane,et al.  Energy-preserving integrators for fluid animation , 2009, SIGGRAPH 2009.

[3]  James F. O'Brien,et al.  Liquid simulation on lattice-based tetrahedral meshes , 2007 .

[4]  Yongning Zhu,et al.  Animating sand as a fluid , 2005, SIGGRAPH 2005.

[5]  Dimitris N. Metaxas,et al.  Textured Liquids based on the Marker Level Set , 2007, Comput. Graph. Forum.

[6]  Fang Q. Hu,et al.  Absorbing boundary conditions for nonlinear Euler and Navier-Stokes equations based on the perfectly matched layer technique , 2008, J. Comput. Phys..

[7]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[8]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[9]  Roland W. Lewis,et al.  Finite element modelling of surface tension effects using a Lagrangian-Eulerian kinematic description , 1997 .

[10]  David Salomon,et al.  Data Compression: The Complete Reference , 2006 .

[11]  Ying He,et al.  Adapted unstructured LBM for flow simulation on curved surfaces , 2005, SCA '05.

[12]  Jie Tan,et al.  Physically-based fluid animation: A survey , 2009, Science in China Series F: Information Sciences.

[13]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[14]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[15]  Renato Pajarola,et al.  Out-Of-Core Algorithms for Scientific Visualization and Computer Graphics , 2002 .

[16]  James F. O'Brien,et al.  Fluid animation with dynamic meshes , 2006, ACM Trans. Graph..

[17]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[18]  Frank Losasso,et al.  A fast and accurate semi-Lagrangian particle level set method , 2005 .

[19]  Thomas Hagstrom,et al.  Perfectly Matched Layers and Radiation Boundary Conditions for Shear Flow Calculations , 2003 .

[20]  Adam W. Bargteil A semi-Lagrangian contouring method for fluid simulation , 2005, SIGGRAPH '05.

[21]  Gabriel Taubin,et al.  BLIC: Bi-Level Isosurface Compression , 2002, IEEE Visualization, 2002. VIS 2002..

[22]  Craig Gotsman,et al.  Triangle Mesh Compression , 1998, Graphics Interface.

[23]  A. Söderström,et al.  Euclidian Distance Transform Algorithms : A comparative study , 2007 .

[24]  F. Hu On Absorbing Boundary Conditions for Linearized Euler Equations by a Perfectly Matched Layer , 1995 .

[25]  Jeffrey Scott Vitter External memory algorithms , 1998, PODS '98.

[26]  William P. Reinhardt,et al.  Complex Coordinates in the Theory of Atomic and Molecular Structure and Dynamics , 1982 .

[27]  R. E. Carlson,et al.  Monotone Piecewise Cubic Interpolation , 1980 .

[28]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[29]  Jonathan M. Cohen,et al.  Low viscosity flow simulations for animation , 2008, SCA '08.

[30]  Ken Museth,et al.  Blobtacular: surfacing particle system in "Pirates of the Caribbean 3" , 2007, SIGGRAPH '07.

[31]  Ola Nilsson Level-set methods and geodesic distance functions , 2009 .

[32]  R. Fedkiw,et al.  USING THE PARTICLE LEVEL SET METHOD AND A SECOND ORDER ACCURATE PRESSURE BOUNDARY CONDITION FOR FREE SURFACE FLOWS , 2003 .

[33]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[34]  Xin Zhang,et al.  The evaluation of non-reflecting boundary conditions for duct acoustic computation , 2004 .

[35]  Jarek Rossignac,et al.  Out‐of‐core compression and decompression of large n‐dimensional scalar fields , 2003, Comput. Graph. Forum.

[36]  Anne-Sophie Bonnet-Ben Dhia,et al.  Perfectly Matched Layers for the Convected Helmholtz Equation , 2004, SIAM J. Numer. Anal..

[37]  Andreas C. Cangellaris,et al.  GT-PML: generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[38]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[39]  Dimitris N. Metaxas,et al.  Controlling fluid animation , 1997, Proceedings Computer Graphics International.

[40]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[41]  Fang. Q. Hu On the construction of PML absorbing boundary condition for the non-linear Euler equations , 2006 .

[42]  Ken Museth,et al.  Out-of-core and compressed level set methods , 2007, TOGS.

[43]  A. Asif,et al.  Continuous and Discrete Time Signals and Systems with CD-ROM , 2007 .

[44]  Ronald Fedkiw,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[45]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[46]  W. Cheney,et al.  Numerical analysis: mathematics of scientific computing (2nd ed) , 1991 .

[47]  T. Yabe,et al.  The constrained interpolation profile method for multiphase analysis , 2001 .

[48]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, SIGGRAPH 2004.

[49]  H. C. Oersted On the direct complex scaling of matrix elements expressed in a discrete variable representation : Application to molecular resonances , 1996 .

[50]  Thomas J. Pence Models of mechanics , 2006 .

[51]  Martin Burtscher,et al.  High Throughput Compression of Double-Precision Floating-Point Data , 2007, 2007 Data Compression Conference (DCC'07).

[52]  T. Dupont,et al.  Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function , 2003 .

[53]  Steven G. Johnson,et al.  Notes on Perfectly Matched Layers (PMLs) , 2021, ArXiv.

[54]  Thomas Hagstrom,et al.  Absorbing Layers and Radiation Boundary Conditions for Jet Flow Simulations , 2002 .

[55]  Christopher Batty,et al.  Tetrahedral Embedded Boundary Methods for Accurate and Flexible Adaptive Fluids , 2010, Comput. Graph. Forum.

[56]  Ken Museth,et al.  Dynamic Tubular Grid: An Efficient Data Structure and Algorithms for High Resolution Level Sets , 2006, J. Sci. Comput..

[57]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[58]  Fang Q. Hu,et al.  Development of PML absorbing boundary conditions for computational aeroacoustics: A progress review , 2008 .

[59]  Ken Museth,et al.  Virtually infinite resolution deformable surfaces , 2006, SIGGRAPH '06.

[60]  Ken Museth An efficient level set toolkit for visual effects , 2009, SIGGRAPH '09.

[61]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[62]  Fang Q. Hu,et al.  A Perfectly Matched Layer absorbing boundary condition for linearized Euler equations with a non-uniform mean flow , 2005 .

[63]  E. Turkel,et al.  Absorbing PML boundary layers for wave-like equations , 1998 .

[64]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[65]  Ken Museth,et al.  CrackTastic: fast 3D fragmentation in "The Mummy: Tomb of the Dragon Emperor" , 2008, SIGGRAPH '08.

[66]  M. Baer,et al.  The time‐dependent Schrödinger equation: Application of absorbing boundary conditions , 1989 .

[67]  David Gottlieb,et al.  A Mathematical Analysis of the PML Method , 1997 .

[68]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[69]  Boo Cheong Khoo,et al.  An adaptive mesh redistribution method for the incompressible mixture flows using phase-field model , 2007, J. Comput. Phys..

[70]  C. W. Hirt,et al.  A lagrangian method for calculating the dynamics of an incompressible fluid with free surface , 1970 .

[71]  Thomas Hagstrom,et al.  High-Order Methods and Boundary Conditions for Simulating Subsonic Flows , 2005 .

[72]  David E. Breen,et al.  Level set surface editing operators , 2002, ACM Trans. Graph..

[73]  J. Tessendorf Simulating Ocean Water , 2004 .

[74]  Hyeong-Seok Ko,et al.  Stretching and wiggling liquids , 2009, ACM Trans. Graph..

[75]  Ronald Fedkiw,et al.  Two-Way Coupled SPH and Particle Level Set Fluid Simulation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[76]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[77]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[78]  Pingwen Zhang,et al.  An adaptive mesh redistribution method for nonlinear Hamilton--Jacobi equations in two-and three-dimensions , 2003 .

[79]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[80]  Dimitris N. Metaxas,et al.  Modeling the motion of a hot, turbulent gas , 1997, SIGGRAPH.

[81]  F. Hu A Stable, perfectly matched layer for linearized Euler equations in unslit physical variables , 2001 .

[82]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[83]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[84]  Sivan Toledo,et al.  A survey of out-of-core algorithms in numerical linear algebra , 1999, External Memory Algorithms.

[85]  Duc Quang Nguyen,et al.  Physically based modeling and animation of fire , 2002, ACM Trans. Graph..

[86]  Ken Museth,et al.  Non-reflective boundary conditions for incompressible free surface fluids , 2009, SIGGRAPH '09.

[87]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[88]  Ken Museth,et al.  Distributed Ray Tracing in an Open Source Environment (Work in Progress) , 2006 .

[89]  Ken Museth,et al.  Hierarchical RLE level set: A compact and versatile deformable surface representation , 2006, TOGS.

[90]  Ken Museth,et al.  A Spatially Adaptive Morphological Filter for Dual-Resolution Interface Tracking of Fluids , 2010, Eurographics.

[91]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[92]  Jeffrey Scott Vitter,et al.  External memory algorithms and data structures: dealing with massive data , 2001, CSUR.

[93]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[94]  David Stephens,et al.  Destroying LA for "2012" , 2010, SIGGRAPH '10.

[95]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, SIGGRAPH 2007.

[96]  J. Steinhoff,et al.  Modification of the Euler equations for ‘‘vorticity confinement’’: Application to the computation of interacting vortex rings , 1994 .

[97]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[98]  Ken Museth,et al.  A PML-based nonreflective boundary for free surface fluid animation , 2010, TOGS.