Effects of in-process cryocooling on metallurgical and mechanical properties of friction stir processed Al7075 alloy

[1]  Z. Ma,et al.  Simultaneously improving mechanical properties and damping capacity of Al-Mg-Si alloy through friction stir processing , 2017 .

[2]  Haiyang Li,et al.  Effect of Water Cooling on the Microstructure and Mechanical Properties of 6N01 Aluminum Alloy P-MIG-Welded Joints , 2017, Journal of Materials Engineering and Performance.

[3]  Atul Kumar,et al.  Effect of Process Parameters on Microstructural Evolution, Mechanical Properties and Corrosion Behavior of Friction Stir Processed Al 7075 Alloy , 2017, Journal of Materials Engineering and Performance.

[4]  M. Ebrahimi,et al.  Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy , 2016 .

[5]  C. Cepeda-Jiménez,et al.  Strategy for severe friction stir processing to obtain acute grain refinement of an Al-Zn-Mg-Cu alloy in three initial precipitation states , 2016 .

[6]  Ashutosh Kumar Singh,et al.  Simultaneous improvement of strength, ductility and corrosion resistance of Al2024 alloy processed by cryoforging followed by ageing , 2016 .

[7]  C. Koch,et al.  Effect of stacking fault energy on mechanical properties and strengthening mechanisms of brasses processed by cryorolling , 2015 .

[8]  S. Rouhi,et al.  Experimental investigation on the effect of process environment on the mechanical properties of AA5083/Al2O3 nanocomposite fabricated via friction stir processing , 2015 .

[9]  Z. Nie,et al.  Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of a super high strength Al–Zn–Mg–Cu aluminum alloy , 2015 .

[10]  H. Fujii,et al.  Enhanced mechanical properties of 70/30 brass joint by rapid cooling friction stir welding , 2014 .

[11]  P. Rometsch,et al.  Heat treatment of 7xxx series aluminium alloys—Some recent developments , 2014 .

[12]  S. Amirkhanlou,et al.  Application of compocasting and cross accumulative roll bonding processes for manufacturing high-strength, highly uniform and ultra-fine structured Al/SiCp nanocomposite , 2014 .

[13]  Julie M. Schoenung,et al.  Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation-Strengthened Aluminum Alloy , 2014 .

[14]  J. Lippold,et al.  Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219 , 2013 .

[15]  R. Valiev,et al.  Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development , 2013 .

[16]  B. Xiao,et al.  Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling , 2011 .

[17]  Huijie Zhang,et al.  Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy , 2011 .

[18]  K. Higashi,et al.  Comprehensive analysis of minimum grain size in pure aluminum using friction stir processing , 2010 .

[19]  A. Reynolds,et al.  Effects of thermal boundary conditions in friction stir welded AA7050-T7 sheets , 2010 .

[20]  Y. Chen,et al.  Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys , 2009 .

[21]  L. Fratini,et al.  In-process heat treatments to improve FS-welded butt joints , 2009 .

[22]  Jin-feng Li,et al.  Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments , 2008 .

[23]  V. Balasubramanian Relationship between base metal properties and friction stir welding process parameters , 2008 .

[24]  J. C. Huang,et al.  Achieving ultrafine grain size in Mg–Al–Zn alloy by friction stir processing , 2007 .

[25]  Tracy W. Nelson,et al.  Microstructure evolution during FSW/FSP of high strength aluminum alloys , 2005 .

[26]  R. Mishra,et al.  Low temperature superplasticity in a friction-stir-processed ultrafine grained Al–Zn–Mg–Sc alloy , 2005 .

[27]  K. Vecchio,et al.  Submerged friction stir processing (SFSP): An improved method for creating ultra-fine-grained bulk materials , 2005 .

[28]  R. Valiev,et al.  Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing , 2004 .

[29]  J. C. Huang,et al.  Relationship between grain size and Zener¿Holloman parameter during friction stir processing in AZ31 Mg alloys , 2004 .

[30]  I. Shigematsu,et al.  Mechanical properties of fine-grained aluminum alloy produced by friction stir process , 2003 .

[31]  Michael Calabrese,et al.  Fine-grain evolution in friction-stir processed 7050 aluminum , 2003 .

[32]  H. Tokisue,et al.  Underwater friction welding of 6061 aluminum alloy. , 2002 .

[33]  Rajiv S. Mishra,et al.  Friction Stir Welding and Processing , 2007 .

[34]  Rajiv S. Mishra,et al.  Friction Stir Processing: A New Grain Refinement Technique to Achieve High Strain Rate Superplasticity in Commercial Alloys , 2001 .

[35]  Kumar V. Jata,et al.  Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451 , 2000 .

[36]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[37]  Q. Liu,et al.  Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion–compression , 1999 .

[38]  M. W. Mahoney,et al.  Properties of friction-stir-welded 7075 T651 aluminum , 1998 .

[39]  Joseph R. Davis Properties and selection : nonferrous alloys and special-purpose materials , 1990 .

[40]  R. Ayer,et al.  Microanalytical study of the heterogeneous phases in commercial Al-Zn-Mg-Cu alloys , 1985 .

[41]  A. Ardell,et al.  Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers , 1983 .