Convergence of convex-concave saddle functions: applications to convex programming and mechanics

Abstract It is shown that operation of partial conjugation (the partial Legendre-Fenchel transform) of bivariate convex-concave functions has bicontinuity properties with respect to the extended epi/hypo-convergence of saddle functions and the epi-convergence of the partial conjugate (convex) functions. The results are applied to study the stability of the optimal solutions and associated multipliers of convex programs, and to a couple of problems in mechanics.

[1]  J. Aubin Mathematical methods of game and economic theory , 1979 .

[2]  Jean-Luc Joly Une famille de topologies et de convergences sur l'ensemble des fonctionnelles convexes , 1970 .

[3]  Paolo Marcellini Periodic solutions and homogenization of non linear variational problems , 1978 .

[4]  R. Rockafellar First- and second-order epi-differentiability in nonlinear programming , 1988 .

[5]  Lynn McLinden An extension of Fenchel’s duality theorem to saddle functions and dual minimax problems , 1974 .

[6]  R. Rockafellar Minimax Theorems and Conjugate Saddle-Functions. , 1964 .

[7]  S. M. Robinson Local structure of feasible sets in nonlinear programming , 1983 .

[8]  Convergence de fonctionnelles convexes , 1978 .

[9]  R. T. Rockafellar,et al.  A general correspondence between dual minimax problems and convex programs , 1968 .

[10]  R. Wets,et al.  A convergence theory for saddle functions , 1983 .

[11]  U. Mosco On the continuity of the Young-Fenchel transform , 1971 .

[12]  S. M. Robinson Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity , 1987 .

[13]  L. McLinden,et al.  Preservation of convergence of convex sets and functions in finite dimensions , 1981 .

[14]  Dual Operations on Saddle Functions. , 1973 .

[15]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[16]  J. Lions,et al.  Les inéquations en mécanique et en physique , 1973 .

[17]  H. Attouch Variational convergence for functions and operators , 1984 .

[18]  R. Tyrrell Rockafellar Conjugate Duality and Optimization , 1974 .

[19]  S. M. Robinson Local Structure of Feasible Sets in Nonlinear Programming - Part II. Nondegeneracy , 1984 .

[20]  J. Aubin,et al.  L'analyse non linéaire et ses motivations économiques , 1984 .

[21]  RockaJellm MONOTONE OPERATORS ASSOCIATED WITH SADDLE . FUNCTIONS AND MINIMAX PROBLEMS R . 1 ' , 2022 .

[22]  R. Wets,et al.  APPROXIMATION AND CONVERGENCE IN NONLINEAR OPTIMIZATION , 1981 .

[23]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[24]  R. Wijsman Convergence of sequences of convex sets, cones and functions. II , 1966 .

[25]  Hedy Attouch On the maximality of the sum of two maximal monotone operators , 1981 .

[26]  K. Back Continuity of the Fenchel transform of convex functions , 1986 .

[27]  U. Mosco Convergence of convex sets and of solutions of variational inequalities , 1969 .

[28]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[29]  A. Auslender Optimisation : méthodes numériques , 1976 .

[30]  A. Truffert,et al.  Régularisation S.C.I. et γ-convergence: Approximations inf-convolutives associées à un référentiel , 1988 .

[31]  Alcune caratterizzazioni della γ-convergenza multipla , 1982 .

[32]  T. Zolezzi On stability analysis in mathematical programming , 1984 .

[33]  L. McLinden Successive approximation and linear stability involving convergent sequences of optimization problems , 1982 .

[34]  Roger J.-B. Wets,et al.  A convergence for bivariate functions aimed at the convergence of saddle values , 1983 .