Quantitative Reappraisal of the Helmholtz-Guyton Resonance Theory of Frequency Tuning in the Cochlea

To explore the fundamental biomechanics of sound frequency transduction in the cochlea, a two-dimensional analytical model of the basilar membrane was constructed from first principles. Quantitative analysis showed that axial forces along the membrane are negligible, condensing the problem to a set of ordered one-dimensional models in the radial dimension, for which all parameters can be specified from experimental data. Solutions of the radial models for asymmetrical boundary conditions produce realistic deformation patterns. The resulting second-order differential equations, based on the original concepts of Helmholtz and Guyton, and including viscoelastic restoring forces, predict a frequency map and amplitudes of deflections that are consistent with classical observations. They also predict the effects of an observation hole drilled in the surrounding bone, the effects of curvature of the cochlear spiral, as well as apparent traveling waves under a variety of experimental conditions. A quantitative rendition of the classical Helmholtz-Guyton model captures the essence of cochlear mechanics and unifies the competing resonance and traveling wave theories.

[1]  Mathematical modeling of the radial profile of basilar membrane vibrations in the inner ear. , 2004, The Journal of the Acoustical Society of America.

[2]  M. Ruggero,et al.  Cochlear delays and traveling waves: comments on 'Experimental look at cochlear mechanics'. , 1994, Audiology : official organ of the International Society of Audiology.

[3]  L. Robles,et al.  Mechanics of the mammalian cochlea. , 2001, Physiological reviews.

[4]  W. Marsden I and J , 2012 .

[5]  Georg v. Békésy,et al.  The Variation of Phase Along the Basilar Membrane with Sinusoidal Vibrations , 1947 .

[6]  D O Kim,et al.  A system of nonlinear differential equations modeling basilar-membrane motion. , 1973, The Journal of the Acoustical Society of America.

[7]  J F Ashmore,et al.  Finite element micromechanical modeling of the cochlea in three dimensions. , 1996, The Journal of the Acoustical Society of America.

[8]  David C Mountain,et al.  Basilar membrane tension calculations for the gerbil cochlea. , 2007, The Journal of the Acoustical Society of America.

[9]  E. Givelberg,et al.  Detailed Simulation of the Cochlea: Recent Progress Using Large Shared Memory Parallel Computers , 2001 .

[10]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[11]  J. Michael Textbook of Medical Physiology , 2005 .

[12]  A Dancer Experimental look at cochlear mechanics. , 1992, Audiology : official organ of the International Society of Audiology.

[13]  Jozef J. Zwislocki,et al.  Theory of the Acoustical Action of the Cochlea , 1950 .

[14]  M. Ruggero SUR LES DELAIS COCHLEAIRES ET LES ONDES PROPAGEES: COMMENTAIRE SUR 'EXPERIMENTAL LOOK AT COCHLEAR MECHANICS' (APPROCHE EXPERIMENTALE DE LA MECANIQUE COCHLEAIRE) , 1994 .

[15]  John J Guinan,et al.  Time-frequency analysis of auditory-nerve-fiber and basilar-membrane click responses reveal glide irregularities and non-characteristic-frequency skirts. , 2004, The Journal of the Acoustical Society of America.

[16]  F. Mammano,et al.  Biophysics of the cochlea: linear approximation. , 1993, The Journal of the Acoustical Society of America.

[17]  L M Cabezudo,et al.  The ultrastructure of the basilar membrane in the cat. , 1978, Acta oto-laryngologica.

[18]  Emery M Ku,et al.  A state space model for cochlear mechanics. , 2007, The Journal of the Acoustical Society of America.

[19]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[20]  Edward Givelberg,et al.  A comprehensive three-dimensional model of the cochlea , 2003 .

[21]  Keen Ja A note on the length of the basilar membrane in man and in various mammals. , 1940 .

[22]  Georg v. Békésy,et al.  On the Resonance Curve and the Decay Period at Various Points on the Cochlear Partition , 1949 .

[23]  W. S. Rhode,et al.  Basilar membrane responses to broadband stimuli. , 2000, The Journal of the Acoustical Society of America.

[24]  Andrew Bell,et al.  Hearing: Travelling Wave or Resonance? , 2004, PLoS biology.

[25]  A. Hubbard,et al.  A traveling-wave amplifier model of the cochlea. , 1993, Science.

[26]  E. de Boer,et al.  Basilar-membrane responses to multicomponent (Schroeder-phase) signals: understanding intensity effects. , 2003, The Journal of the Acoustical Society of America.

[27]  P J Kolston,et al.  Comparing in vitro, in situ, and in vivo experimental data in a three-dimensional model of mammalian cochlear mechanics. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Shuangqin Liu,et al.  Orthotropic material properties of the gerbil basilar membrane. , 2007, The Journal of the Acoustical Society of America.

[29]  W. T. Peake,et al.  Sound-pressure measurements in the cochlear vestibule of human-cadaver ears. , 1997, The Journal of the Acoustical Society of America.

[30]  W. S. Rhode Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. , 1971, The Journal of the Acoustical Society of America.

[31]  P. Coleman,et al.  Experiments in hearing , 1961 .

[32]  James D. Miller Sex differences in the length of the organ of Corti in humans. , 2007, The Journal of the Acoustical Society of America.

[33]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[34]  G. von Békésy,et al.  Current status of theories of hearing. , 1956, Science.

[35]  S. BRODETSKY,et al.  Theory of Plates and Shells , 1941, Nature.

[36]  M. Ruggero,et al.  Basilar-membrane responses to clicks at the base of the chinchilla cochlea. , 1998, The Journal of the Acoustical Society of America.

[37]  D. D. Greenwood A cochlear frequency-position function for several species--29 years later. , 1990, The Journal of the Acoustical Society of America.

[38]  Tomonori Takasaka,et al.  Measurement of guinea pig basilar membrane using computer-aided three-dimensional reconstruction system , 1996, Hearing Research.

[39]  M. Fiore An atlas of human histology , 1961 .

[40]  Daphne Manoussaki,et al.  The influence of cochlear shape on low-frequency hearing , 2008, Proceedings of the National Academy of Sciences.

[41]  Hongxue Cai,et al.  Effects of coiling on the micromechanics of the mammalian cochlea , 2005, Journal of The Royal Society Interface.

[42]  Experimental Look at Cochlear Mechanics: Approche expérimental de la mécanique cochléaire , 1992 .

[43]  L. Robles,et al.  Basilar-membrane responses to tones at the base of the chinchilla cochlea. , 1997, The Journal of the Acoustical Society of America.

[44]  Ray Vanderby,et al.  Nonlinear Viscoelasticity in Rabbit Medial Collateral Ligament , 2004, Annals of Biomedical Engineering.

[45]  J B Allen,et al.  Two-dimensional cochlear fluid model: new results. , 1977, The Journal of the Acoustical Society of America.