Quantitative Reappraisal of the Helmholtz-Guyton Resonance Theory of Frequency Tuning in the Cochlea
暂无分享,去创建一个
[1] Mathematical modeling of the radial profile of basilar membrane vibrations in the inner ear. , 2004, The Journal of the Acoustical Society of America.
[2] M. Ruggero,et al. Cochlear delays and traveling waves: comments on 'Experimental look at cochlear mechanics'. , 1994, Audiology : official organ of the International Society of Audiology.
[3] L. Robles,et al. Mechanics of the mammalian cochlea. , 2001, Physiological reviews.
[4] W. Marsden. I and J , 2012 .
[5] Georg v. Békésy,et al. The Variation of Phase Along the Basilar Membrane with Sinusoidal Vibrations , 1947 .
[6] D O Kim,et al. A system of nonlinear differential equations modeling basilar-membrane motion. , 1973, The Journal of the Acoustical Society of America.
[7] J F Ashmore,et al. Finite element micromechanical modeling of the cochlea in three dimensions. , 1996, The Journal of the Acoustical Society of America.
[8] David C Mountain,et al. Basilar membrane tension calculations for the gerbil cochlea. , 2007, The Journal of the Acoustical Society of America.
[9] E. Givelberg,et al. Detailed Simulation of the Cochlea: Recent Progress Using Large Shared Memory Parallel Computers , 2001 .
[10] W. M. Haynes. CRC Handbook of Chemistry and Physics , 1990 .
[11] J. Michael. Textbook of Medical Physiology , 2005 .
[12] A Dancer. Experimental look at cochlear mechanics. , 1992, Audiology : official organ of the International Society of Audiology.
[13] Jozef J. Zwislocki,et al. Theory of the Acoustical Action of the Cochlea , 1950 .
[14] M. Ruggero. SUR LES DELAIS COCHLEAIRES ET LES ONDES PROPAGEES: COMMENTAIRE SUR 'EXPERIMENTAL LOOK AT COCHLEAR MECHANICS' (APPROCHE EXPERIMENTALE DE LA MECANIQUE COCHLEAIRE) , 1994 .
[15] John J Guinan,et al. Time-frequency analysis of auditory-nerve-fiber and basilar-membrane click responses reveal glide irregularities and non-characteristic-frequency skirts. , 2004, The Journal of the Acoustical Society of America.
[16] F. Mammano,et al. Biophysics of the cochlea: linear approximation. , 1993, The Journal of the Acoustical Society of America.
[17] L M Cabezudo,et al. The ultrastructure of the basilar membrane in the cat. , 1978, Acta oto-laryngologica.
[18] Emery M Ku,et al. A state space model for cochlear mechanics. , 2007, The Journal of the Acoustical Society of America.
[19] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[20] Edward Givelberg,et al. A comprehensive three-dimensional model of the cochlea , 2003 .
[21] Keen Ja. A note on the length of the basilar membrane in man and in various mammals. , 1940 .
[22] Georg v. Békésy,et al. On the Resonance Curve and the Decay Period at Various Points on the Cochlear Partition , 1949 .
[23] W. S. Rhode,et al. Basilar membrane responses to broadband stimuli. , 2000, The Journal of the Acoustical Society of America.
[24] Andrew Bell,et al. Hearing: Travelling Wave or Resonance? , 2004, PLoS biology.
[25] A. Hubbard,et al. A traveling-wave amplifier model of the cochlea. , 1993, Science.
[26] E. de Boer,et al. Basilar-membrane responses to multicomponent (Schroeder-phase) signals: understanding intensity effects. , 2003, The Journal of the Acoustical Society of America.
[27] P J Kolston,et al. Comparing in vitro, in situ, and in vivo experimental data in a three-dimensional model of mammalian cochlear mechanics. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[28] Shuangqin Liu,et al. Orthotropic material properties of the gerbil basilar membrane. , 2007, The Journal of the Acoustical Society of America.
[29] W. T. Peake,et al. Sound-pressure measurements in the cochlear vestibule of human-cadaver ears. , 1997, The Journal of the Acoustical Society of America.
[30] W. S. Rhode. Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. , 1971, The Journal of the Acoustical Society of America.
[31] P. Coleman,et al. Experiments in hearing , 1961 .
[32] James D. Miller. Sex differences in the length of the organ of Corti in humans. , 2007, The Journal of the Acoustical Society of America.
[33] R. C. Weast. CRC Handbook of Chemistry and Physics , 1973 .
[34] G. von Békésy,et al. Current status of theories of hearing. , 1956, Science.
[35] S. BRODETSKY,et al. Theory of Plates and Shells , 1941, Nature.
[36] M. Ruggero,et al. Basilar-membrane responses to clicks at the base of the chinchilla cochlea. , 1998, The Journal of the Acoustical Society of America.
[37] D. D. Greenwood. A cochlear frequency-position function for several species--29 years later. , 1990, The Journal of the Acoustical Society of America.
[38] Tomonori Takasaka,et al. Measurement of guinea pig basilar membrane using computer-aided three-dimensional reconstruction system , 1996, Hearing Research.
[39] M. Fiore. An atlas of human histology , 1961 .
[40] Daphne Manoussaki,et al. The influence of cochlear shape on low-frequency hearing , 2008, Proceedings of the National Academy of Sciences.
[41] Hongxue Cai,et al. Effects of coiling on the micromechanics of the mammalian cochlea , 2005, Journal of The Royal Society Interface.
[42] Experimental Look at Cochlear Mechanics: Approche expérimental de la mécanique cochléaire , 1992 .
[43] L. Robles,et al. Basilar-membrane responses to tones at the base of the chinchilla cochlea. , 1997, The Journal of the Acoustical Society of America.
[44] Ray Vanderby,et al. Nonlinear Viscoelasticity in Rabbit Medial Collateral Ligament , 2004, Annals of Biomedical Engineering.
[45] J B Allen,et al. Two-dimensional cochlear fluid model: new results. , 1977, The Journal of the Acoustical Society of America.