Monoids and Computations

This contribution wishes to argue in favor of increased interaction between experts on finite monoids and specialists of theory of computation. Developing the algebraic approach to formal computations as well as the computational point of view on monoids will prove to be beneficial to both communities. We give examples of this two-way relationship coming from temporal logic, communication complexity and Boolean circuits. Although mostly expository in nature, our paper proves some new results along the way.

[1]  M. Schützenberger,et al.  Sur Le Produit De Concatenation Non Ambigu , 1976 .

[2]  W. D. Maurer,et al.  A property of finite simple non-abelian groups , 1965 .

[3]  Dominique Perrin,et al.  On the Expressive Power of Temporal Logic , 1993, J. Comput. Syst. Sci..

[4]  Eric Allender,et al.  The Permanent Requires Large Uniform Threshold Circuits , 1999, Chic. J. Theor. Comput. Sci..

[5]  Jean-Éric Pin,et al.  Syntactic Semigroups , 1997, Handbook of Formal Languages.

[6]  E. Kushilevitz,et al.  Communication Complexity: Basics , 1996 .

[7]  Thomas Wilke,et al.  Over words, two variables are as powerful as one quantifier alternation , 1998, STOC '98.

[8]  Csaba Szabó,et al.  Algebra complexity problems involving graph homomorphism, semigroups and the constraint satisfaction problem , 2003, J. Complex..

[9]  Howard Straubing,et al.  Locally trivial categories and unambiguous concatenation , 1988 .

[10]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[11]  John Rhodes,et al.  The kernel of monoid morphisms , 1989 .

[12]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[13]  Denis Thérien,et al.  NC1: The automata-theoretic viewpoint , 1991, computational complexity.

[14]  Jaikumar Radhakrishnan,et al.  Deterministic restrictions in circuit complexity , 1996, STOC '96.

[15]  Denis Thérien,et al.  An Algebraic Approach to Communication Complexity , 1998, ICALP.

[16]  Denis Thérien,et al.  Complete Classifications for the Communication Complexity of Regular Languages , 2005, Theory of Computing Systems.

[17]  Howard Straubing,et al.  Non-Uniform Automata Over Groups , 1990, Inf. Comput..

[18]  Denis Thérien,et al.  Computational complexity questions related to finite monoids and semigroups , 2003 .

[19]  Howard Straubing,et al.  Weakly Iterated Block Products of Finite Monoids , 2002, LATIN.

[20]  Denis Thérien,et al.  Non-Uniform Automata Over Groups , 1987, Inf. Comput..

[21]  Richard J. Lipton,et al.  Multi-party protocols , 1983, STOC.

[22]  Peter Jeavons FINITE SEMIGROUPS IMPOSING TRACTABLE CONSTRAINTS , 2002 .

[23]  Denis Thérien,et al.  Two-sided wreath product of categories , 1991 .

[24]  Howard Straubing,et al.  When Can One Finite Monoid Simulate Another , 2000 .

[25]  Denis Thérien,et al.  Algebraic Characterizations of Small Classes of Boolean Functions , 2003, STACS.

[26]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[27]  Bret Tilson,et al.  Categories as algebra: An essential ingredient in the theory of monoids , 1987 .

[28]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[29]  Eric Allender,et al.  A Uniform Circuit Lower Bound for the Permanent , 1994, SIAM J. Comput..

[30]  Thomas Wilke,et al.  Temporal logic and semidirect products: an effective characterization of the until hierarchy , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[31]  Peter Frankl,et al.  Complexity classes in communication complexity theory , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[32]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[33]  Andris Ambainis,et al.  Algebraic Results on Quantum Automata , 2005, Theory of Computing Systems.

[34]  Pavel Pudlák An Application of Hindman's Theorem to a Problem on Communication Complexity , 2003, Comb. Probab. Comput..

[35]  Alexander Russell,et al.  An ergodic theorem for read-once non-uniform deterministic finite automata , 2000, Information Processing Letters.

[36]  Thomas Wilke,et al.  Nesting Until and Since in Linear Temporal Logic , 2003, Theory of Computing Systems.