Bouc–Wen hysteresis model identification using Modified Firefly Algorithm
暂无分享,去创建一个
[1] I. Mayergoyz,et al. Generalized Preisach model of hysteresis , 1988 .
[2] K. Chandrasekaran,et al. Use of Genetic Algorithm to Determine Lightning Channel-Base Current-Function Parameters , 2014, IEEE Transactions on Electromagnetic Compatibility.
[3] C. K. Dimou,et al. Identification of Bouc-Wen hysteretic systems using particle swarm optimization , 2010 .
[4] F. Ikhouane,et al. Variation of the hysteresis loop with the Bouc–Wen model parameters , 2007 .
[5] Tudor Sireteanu,et al. AN ANALYTICAL APPROACH FOR APPROXIMATION OF EXPERIMENTAL HYSTERETIC LOOPS BY BOUC -WEN MODEL , 2009 .
[6] Electromagnetic Noise Source Approximation for Finite-Difference Time-Domain Modeling Using Near-Field Scanning and Particle Swarm Optimization , 2010, IEEE Transactions on Electromagnetic Compatibility.
[7] Krzysztof Chwastek,et al. Identification of a hysteresis model parameters with genetic algorithms , 2006, Math. Comput. Simul..
[8] John E. Fletcher,et al. Double-Frequency Method Using Differential Evolution for Identifying Parameters in the Dynamic Jiles–Atherton Model of Mn–Zn Ferrites , 2013, IEEE Transactions on Instrumentation and Measurement.
[9] Yitao Liu,et al. Conducted EMI Prediction of the PFC Converter Including Nonlinear Behavior of Boost Inductor , 2013, IEEE Transactions on Electromagnetic Compatibility.
[10] Meiying Ye,et al. Parameter estimation of the Bouc–Wen hysteresis model using particle swarm optimization , 2007 .
[11] Xin-She Yang,et al. Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..
[12] Y. Wen. Method for Random Vibration of Hysteretic Systems , 1976 .
[13] Keith Worden,et al. IDENTIFICATION OF HYSTERETIC SYSTEMS USING THE DIFFERENTIAL EVOLUTION ALGORITHM , 2001 .
[14] V. K. Koumousis,et al. Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm , 2008 .
[15] Xin-She Yang,et al. Firefly Algorithms for Multimodal Optimization , 2009, SAGA.
[16] Slawomir Zak,et al. Firefly Algorithm for Continuous Constrained Optimization Tasks , 2009, ICCCI.
[17] P. M. B. Silva Girao,et al. Automated measurement system to generate a Preisach-type model of ferromagnetic hysteresis , 1986, IEEE Transactions on Instrumentation and Measurement.
[18] Alden H. Wright,et al. Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.
[19] T. Sireteanu,et al. USE OF GENETIC ALGORITHMS FOR FITTING THE BOUC- WEN MODEL TO EXPERIMENTAL HYSTERETIC CURVES , 2009 .
[20] Meiying Ye,et al. Parameter identification of hysteresis model with improved particle swarm optimization , 2009, 2009 Chinese Control and Decision Conference.
[21] D. Jiles,et al. Theory of ferromagnetic hysteresis , 1986 .
[22] Daniel Bedoya-Ruiz,et al. Identification of Bouc-Wen type models using multi-objective optimization algorithms , 2013 .
[23] Xin-She Yang,et al. Firefly Algorithm: Recent Advances and Applications , 2013, ArXiv.
[24] L. Michaeli,et al. Automatic and accurate evaluation of the parameters of the magnetic hysteresis model , 1998, IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222).
[25] Alessandro Salvini,et al. Bouc–Wen Hysteresis Model Identification by the Metric-Topological Evolutionary Optimization , 2014, IEEE Transactions on Magnetics.
[26] Antonino Laudani,et al. Comparative analysis of Bouc-Wen and Jiles-Atherton models under symmetric excitations , 2014 .