Bouc–Wen hysteresis model identification using Modified Firefly Algorithm

Abstract The parameters of Bouc–Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc–Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc–Wen model parameters. Finally, the proposed method is used to find the Bouc–Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data.

[1]  I. Mayergoyz,et al.  Generalized Preisach model of hysteresis , 1988 .

[2]  K. Chandrasekaran,et al.  Use of Genetic Algorithm to Determine Lightning Channel-Base Current-Function Parameters , 2014, IEEE Transactions on Electromagnetic Compatibility.

[3]  C. K. Dimou,et al.  Identification of Bouc-Wen hysteretic systems using particle swarm optimization , 2010 .

[4]  F. Ikhouane,et al.  Variation of the hysteresis loop with the Bouc–Wen model parameters , 2007 .

[5]  Tudor Sireteanu,et al.  AN ANALYTICAL APPROACH FOR APPROXIMATION OF EXPERIMENTAL HYSTERETIC LOOPS BY BOUC -WEN MODEL , 2009 .

[6]  Electromagnetic Noise Source Approximation for Finite-Difference Time-Domain Modeling Using Near-Field Scanning and Particle Swarm Optimization , 2010, IEEE Transactions on Electromagnetic Compatibility.

[7]  Krzysztof Chwastek,et al.  Identification of a hysteresis model parameters with genetic algorithms , 2006, Math. Comput. Simul..

[8]  John E. Fletcher,et al.  Double-Frequency Method Using Differential Evolution for Identifying Parameters in the Dynamic Jiles–Atherton Model of Mn–Zn Ferrites , 2013, IEEE Transactions on Instrumentation and Measurement.

[9]  Yitao Liu,et al.  Conducted EMI Prediction of the PFC Converter Including Nonlinear Behavior of Boost Inductor , 2013, IEEE Transactions on Electromagnetic Compatibility.

[10]  Meiying Ye,et al.  Parameter estimation of the Bouc–Wen hysteresis model using particle swarm optimization , 2007 .

[11]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[12]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[13]  Keith Worden,et al.  IDENTIFICATION OF HYSTERETIC SYSTEMS USING THE DIFFERENTIAL EVOLUTION ALGORITHM , 2001 .

[14]  V. K. Koumousis,et al.  Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm , 2008 .

[15]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[16]  Slawomir Zak,et al.  Firefly Algorithm for Continuous Constrained Optimization Tasks , 2009, ICCCI.

[17]  P. M. B. Silva Girao,et al.  Automated measurement system to generate a Preisach-type model of ferromagnetic hysteresis , 1986, IEEE Transactions on Instrumentation and Measurement.

[18]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[19]  T. Sireteanu,et al.  USE OF GENETIC ALGORITHMS FOR FITTING THE BOUC- WEN MODEL TO EXPERIMENTAL HYSTERETIC CURVES , 2009 .

[20]  Meiying Ye,et al.  Parameter identification of hysteresis model with improved particle swarm optimization , 2009, 2009 Chinese Control and Decision Conference.

[21]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[22]  Daniel Bedoya-Ruiz,et al.  Identification of Bouc-Wen type models using multi-objective optimization algorithms , 2013 .

[23]  Xin-She Yang,et al.  Firefly Algorithm: Recent Advances and Applications , 2013, ArXiv.

[24]  L. Michaeli,et al.  Automatic and accurate evaluation of the parameters of the magnetic hysteresis model , 1998, IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222).

[25]  Alessandro Salvini,et al.  Bouc–Wen Hysteresis Model Identification by the Metric-Topological Evolutionary Optimization , 2014, IEEE Transactions on Magnetics.

[26]  Antonino Laudani,et al.  Comparative analysis of Bouc-Wen and Jiles-Atherton models under symmetric excitations , 2014 .