Adaptive stabilization of infinite-dimensional systems

B. Martensson (1985) showed that in order to stabilize an unknown linear, time-invariant, finite-dimensional system, it is sufficient to know the order of any stabilizing controller. This result is generalized to a large class of infinite-dimensional systems. For high-gain stabilizable infinite-dimensional systems, an algorithm is presented which takes this additional a priori knowledge into account. Simulation results are presented. >

[1]  Ruth F. Curtain,et al.  Robust control of flexible structures A case study , 1988, Autom..

[2]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[3]  Toshihiro Kobayashi Model reference adaptive control for spectral systems , 1987 .

[4]  George Weiss,et al.  Admissible observation operators for linear semigroups , 1989 .

[5]  Hartmut Logemann,et al.  Some remarks on adaptive stabilization of infinite-dimensional systems , 1991 .

[6]  David H. Owens,et al.  Adaptive stabilization with exponential decay , 1990 .

[7]  J. Willems,et al.  Global adaptive stabilization in the absence of information on the sign of the high frequency gain , 1984 .

[8]  C. Jacobson,et al.  Linear state-space systems in infinite-dimensional space: the role and characterization of joint stabilizability/detectability , 1988 .

[9]  Toshihiro Kobayashi A digital adaptive control law for a parabolic distributed parameter system , 1984 .

[10]  L. Valavani,et al.  Robustness of adaptive control algorithms in the presence of unmodeled dynamics , 1982, 1982 21st IEEE Conference on Decision and Control.

[11]  R. Ortega,et al.  Conditions for preservation of stability of adaptive controllers for systems with unmodeled delay , 1988 .

[12]  Hartmut Logemann,et al.  Adaptive exponential stabilization for a class of nonlinear retarded processes , 1990, Math. Control. Signals Syst..

[13]  Dietmar A. Salamon,et al.  On control and observation of neutral systems , 1982 .

[14]  M. Vidyasagar,et al.  Algebraic and topological aspects of feedback stabilization , 1980 .

[15]  Karl Johan Åström,et al.  Adaptive feedback control , 1987, Proc. IEEE.

[16]  Mark J. Balas,et al.  Finite-dimensional control of distributed parameter systems by Galerkin approximation of infinite dimensional controllers☆ , 1986 .

[17]  Hans Zwart,et al.  On robust PI-control of infinite-dimensional systems , 1990 .

[18]  Richard Bellman,et al.  Differential-Difference Equations , 1967 .

[19]  Jan Willem Polderman,et al.  Adaptive control and identification: conflict or conflux? , 1989 .

[20]  Hartmut Logemann On the existence of finite-dimensional compensators for retarded and neutral systems , 1986 .

[21]  Hartmut Logemann,et al.  Circle criteria, small-gain conditions and internal stability for infinite-dimensional systems , 1991, Autom..

[22]  Christopher I. Byrnes,et al.  Necessary Conditions in Adaptive Control , 1986 .

[23]  A. J. Pritchard,et al.  The Linear-Quadratic Control Problem for Retarded Systems with Delays in Control and Observation , 1985 .

[24]  P. Kokotovic Applications of Singular Perturbation Techniques to Control Problems , 1984 .

[25]  A. J. Pritchard,et al.  The linear quadratic control problem for infinite dimensional systems with unbounded input and outpu , 1987 .

[26]  Toshihiro Kobayshi Global adaptive stabilization of infinite-dimensional systems , 1987 .

[27]  C. Desoer,et al.  An algebra of transfer functions for distributed linear time-invariant systems , 1978 .

[28]  F. Callier,et al.  Simplifications and clarifications on the paper 'An algebra of transfer functions for distributed linear time-invariant systems' , 1980 .

[30]  E. Kamen,et al.  Stabilization of time-delay systems using finite-dimensional compensators , 1985, IEEE Transactions on Automatic Control.

[31]  George Weiss,et al.  Admissibility of unbounded control operators , 1989 .

[32]  Bengt Mårtensson,et al.  The order of any stabilizing regulator is sufficient a priori information for adaptive stabilization , 1985 .

[33]  C. Byrnes,et al.  Adaptive stabilization of multivariable linear systems , 1984, The 23rd IEEE Conference on Decision and Control.

[34]  R. Ortega,et al.  Globally stable adaptive controller for systems with delay , 1988 .

[35]  Mark J. Balas,et al.  Robust Adaptive Control In Hilbert Space , 1989 .

[36]  E. Davison,et al.  An adaptive controller which provides Lyapunov stability , 1989 .

[37]  B. Måtensson,et al.  Remarks on adaptive stabilization of first order non-linear systems , 1990 .

[38]  Xin-jie Zhu,et al.  A Finite Spectrum Unmixing Set For \mathcal{G}\mathcal{L}{\text{(3,}}\mathcal{R}{\text{)}} , 1989 .

[39]  Christopher I. Byrnes,et al.  Asymptotic Expansions, Root-Loci and the Global Stability of Nonlinear Feedback Systems , 1986 .

[40]  Hartmut Logemann,et al.  Input‐output theory of high‐gain adaptive stabilization of infinite‐dimensional systems with non‐linearities , 1988 .

[41]  Ruth F. Curtain,et al.  Robust stabilization of infinite dimensional systems by finite dimensional controllers , 1986 .

[42]  B. Barmish,et al.  Adaptive stabilization of linear systems via switching control , 1986, 1986 25th IEEE Conference on Decision and Control.

[43]  Ruth F. Curtain 5. A Synthesis of Time and Frequency Domain Methods for the Control of Infinite-Dimensional Systems: A System Theoretic Approach , 1992 .

[44]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[45]  Mohammed Dahleh,et al.  Adaptive stabilization of single-input single-output delay systems , 1986 .

[46]  Ruth F. Curtain,et al.  Finite dimensional compensators for infinite dimensional systems with unbounded input operators , 1986 .

[47]  Christopher Byrnes Adaptive stabilization of infinite dimensional linear systems , 1987, 26th IEEE Conference on Decision and Control.

[48]  David L. Russell,et al.  A General Theory of Observation and Control , 1977 .

[49]  Rolf Johansson Estimation and direct adaptive control of delay-differential systems , 1986, Autom..

[50]  Bengt Martensson The Unmixing Problem , 1991 .

[51]  B. Mårtensson Switching function adaptive stabilization with stability margin alpha , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[52]  M. Dahleh,et al.  Generalization of Tychonov's theorem with applications to adaptive control of SISO delay systems , 1990 .

[53]  W. Rudin Real and complex analysis , 1968 .