Absolute configuration determination of chiral molecules in the solution state using vibrational circular dichroism.

Advances in the measurement, calculation, and application of vibrational circular dichroism (VCD) for the determination of absolute configuration are described. The purpose of the review is to provide an up-to-date perspective on the capability of VCD to solve problems of absolute stereochemistry for chiral molecules primarily in the solution state. The scope of the article covers the experimental methods needed for the accurate measurement of VCD spectra and the theoretical steps required to systematically deduce absolute configuration. Determination of absolute configuration of a molecule by VCD requires knowledge of its conformation or conformational distribution, and hence VCD analysis necessarily provides solution-state conformation information, in many cases available by no other method, as an additional benefit. Comparisons of the advantages and limitations of VCD relative to other available chiroptical methods of analysis are also presented.

[1]  P. Bouř,et al.  Ab initio quantum mechanical models of peptide helices and their vibrational spectra. , 2002, Biopolymers.

[2]  P. Bouř,et al.  Synthesis and chiroptical properties of enantiopure tricyclo[4.3.0.03,8]nonane-4,5-dione (twistbrendanedione) , 2002 .

[3]  C. Rizzo,et al.  Absolute configuration and conformational stability of (+)-2,5-dimethylthiolane and (-)-2,5-dimethylsulfolane. , 2001, Journal of Organic Chemistry.

[4]  L. Nafie Dual Polarization Modulation: A Real-Time, Spectral-Multiplex Separation of Circular Dichroism from Linear Birefringence Spectral Intensities , 2000 .

[5]  H. Bohr,et al.  The VA and VCD spectra of various isotopomers of L-alanine in aqueous solution , 2002 .

[6]  M. Balaz,et al.  A new chiral oxathiane: synthesis, resolution and absolute configuration determination by vibrational circular dichroism , 2001 .

[7]  P. Bouř,et al.  Vibrational Circular Dichroism of 1,1‘-Binaphthyl Derivatives: Experimental and Theoretical Study , 2001 .

[8]  M. Diem,et al.  Theory of High Frequency Differential Interferometry: Application to the Measurement of Infrared Circular and Linear Dichroism via Fourier Transform Spectroscopy , 1979 .

[9]  P. Stephens,et al.  Determination of absolute configuration using circular dichroism: Tröger’s Base revisited using vibrational circular dichroism , 1999 .

[10]  L. Nafie Infrared and Raman vibrational optical activity: theoretical and experimental aspects. , 1997, Annual review of physical chemistry.

[11]  P. Polavarapu,et al.  Ab initio theoretical optical rotations of small molecules , 1999 .

[12]  Stefan Grimme,et al.  Circular Dichroism of Helicenes Investigated by Time-Dependent Density Functional Theory , 2000 .

[13]  P. Stephens,et al.  Vibrational circular dichroism and absolute configuration of chiral sulfoxides: tert-butyl methyl sulfoxide. , 2000, Chemistry.

[14]  Jacopo Tomasi,et al.  Glycine and alanine: a theoretical study of solvent effects upon energetics and molecular response properties , 2000 .

[15]  P. Polavarapu,et al.  Predominant Conformations of (2R,3R)-(−)-2,3-Butanediol , 2001 .

[16]  Sándor Suhai,et al.  Structures, vibrational absorption and vibrational circular dichroism spectra of L-alanine in aqueous solution: a density functional theory and RHF study , 2000 .

[17]  P. Stephens,et al.  Determination of the structure of chiral molecules using ab initio vibrational circular dichroism spectroscopy. , 2000, Chirality.

[18]  M. Frisch,et al.  Configurational and conformational analysis of chiral molecules using IR and VCD spectroscopies: spiropentylcarboxylic acid methyl ester and spiropentyl acetate. , 2002, The Journal of organic chemistry.

[19]  D. Young,et al.  Density functional theory calculations of vibrational circular dichroism in transition metal complexes: Identification of solution conformations and mode of chloride ion association for (+)-tris(ethylenediaminato)cobalt(III) , 2002 .

[20]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[21]  C. Welch,et al.  A chiral 1,4-oxazin-2-one: asymmetric synthesis versus resolution, structure, conformation and VCD absolute configuration , 2001 .

[22]  P. Bouř,et al.  B−Z Conformational Transition of DNA Monitored by Vibrational Circular Dichroism. Ab Initio Interpretation of the Experiment , 2002 .

[23]  P. Stephens,et al.  Vibrational circular dichroism of 2,2,2-trifluoro-1-phenylethanol , 1975 .

[24]  P. Stephens,et al.  Conformational Analysis Using ab Initio Vibrational Spectroscopy: 3-Methylcyclohexanone , 1999 .

[25]  N. Berova,et al.  Circular Dichroism: Principles and Applications , 1994 .

[26]  P. Polavarapu,et al.  Vibrational Circular Dichroism: Predominant Conformations and Intermolecular Interactions in (R)-(-)-2-Butanol , 2000 .

[27]  J. Scherer,et al.  RAMAN CIRCULAR INTENSITY DIFFERENTIAL SPECTROSCOPY, THE SPECTRA OF (-)-ALPHA-PINENE AND (+)-ALPHA-PHENYLETHYLAMINE , 1975 .

[28]  P. Bouř,et al.  Vibrational circular dichroism spectroscopy study of paroxetine and femoxetine precursors. , 2002, Biopolymers.

[29]  L. Nafie Velocity‐gauge formalism in the theory of vibrational circular dichroism and infrared absorption , 1992 .

[30]  T. Keiderling,et al.  Differentiation of β-Sheet-Forming Structures: Ab Initio-Based Simulations of IR Absorption and Vibrational CD for Model Peptide and Protein β-Sheets , 2001 .

[31]  C. Toniolo,et al.  Discriminating 3(10)- from alpha-helices: vibrational and electronic CD and IR absorption study of related Aib-containing oligopeptides. , 2002, Biopolymers.

[32]  P. Bouř,et al.  (3R,4S)-4-(4-Fluorophenyl)-3-hydroxymethyl-1-methylpiperidine: conformation and structure monitoring by vibrational circular dichroism. , 2002, The Journal of organic chemistry.

[33]  D. W. Vidrine,et al.  Fourier transform infrared vibrational circular dichroism , 1979 .

[34]  P. Polavarapu,et al.  Conformational Stability of (+)-Epichlorohydrin , 2000 .

[35]  L. Nafie,et al.  Determination of molecular stereochemistry using vibrational circular dichroism spectroscopy: absolute configuration and solution conformation of 5-formyl-cis, cis-1,3,5-trimethyl-3-hydroxymethylcyclohexane-1-carboxylic acid lactone. , 2003, Chemical record.

[36]  P. Polavarapu,et al.  Absolute configuration and conformational analysis of a degradation product of inhalation anesthetic Sevoflurane: A vibrational circular dichroism study. , 2002, Chirality.

[37]  J. Tomasi,et al.  Medium effects on the properties of chemical systems: Electric and magnetic response of donor–acceptor systems within the polarizable continuum model , 1999 .

[38]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Circular Dichroism Spectra Using Gauge-Invariant Atomic Orbitals , 1995 .

[39]  L. Nafie,et al.  Determination of the Absolute Configuration of (-)-Mirtazapine by Vibrational Circular Dichroism , 2002 .

[40]  E. Paulus,et al.  Structure Analysis by Diffraction , 2001 .

[41]  N. Berova,et al.  (R)‐(+)‐ and (S)‐(−)‐1‐(9‐Phenanthryl)ethylamine: Assignment of Absolute Configuration by CD Tweezer and VCD Methods, and Difficulties Encountered with the CD Exciton Chirality Method , 2002 .

[42]  T. Keiderling,et al.  Spectroscopic characterization of selected β- sheet hairpin models , 2002 .

[43]  Xiaolin Cao,et al.  Determination of the absolute configuration of a key tricyclic component of a novel vasopressin receptor antagonist by use of vibrational circular dichroism. , 2002, Chirality.

[44]  T. R. Faulkner,et al.  Infrared circular dichroism of carbon-hydrogen and carbon-deuterium stretching modes. Observations , 1974 .

[45]  Chunxia Zhao,et al.  Ab Initio Predictions of Anomalous Optical Rotatory Dispersion , 1999 .

[46]  J. Tomasi,et al.  Prediction of optical rotation using density functional theory: 6,8-dioxabicyclo[3.2.1]octanes , 2000 .

[47]  P. Stephens,et al.  Structure, Vibrational Absorption and Circular Dichroism Spectra, and Absolute Configuration of Tröger's Base , 2000 .

[48]  L. Nafie,et al.  Vibrational circular dichroism in the mid-infrared using fourier transform spectroscopy , 1982 .

[49]  Vibrational circular dichroism , 1976 .

[50]  P. Stephens,et al.  Determination of absolute configuration using vibrational circular dichroism spectroscopy: the chiral sulfoxide 1-thiochroman S-oxide , 2001 .

[51]  T. Kuppens,et al.  Determination of the Stereochemistry of 3-Hydroxymethyl-2,3-dihydro-[1,4]dioxino[2,3-b]- pyridine by Vibrational Circular Dichroism and the Effect of DFT Integration Grids , 2003 .

[52]  T. Keiderling 5 – Vibrational Circular Dichroism: Comparison of Techniques and Practical Considerations , 1990 .

[53]  P. Polavarapu,et al.  Vibrational Circular Dichroism, Predominant Conformations, and Hydrogen Bonding in (S)-(−)-3-Butyn-2-ol , 2000 .

[54]  A. Baiker,et al.  VCD spectroscopy of chiral cinchona modifiers used in heterogeneous enantioselective hydrogenation: conformation and binding of non-chiral acids , 2002 .

[55]  L. Nafie Vibrational Optical Activity , 1996 .

[56]  Teresa B. Freedman,et al.  Electron Transition Current Density in Molecules. 3. Ab Initio Calculations for Vibrational Transitions in Ethylene and Formaldehyde , 1997 .

[57]  Xiaolin Cao,et al.  Structural studies on McN-5652-X, a high-affinity ligand for the serotonin transporter in mammalian brain. , 2003, Bioorganic & medicinal chemistry.

[58]  F. Wang,et al.  Absolute configurations, predominant conformations, and tautomeric structures of enantiomeric tert-butylphenylphosphinothioic acid. , 2000, The Journal of organic chemistry.

[59]  P. Polavarapu New Developments in Fourier Transform Infrared Vibrational Circular Dichroism Measurements , 1989 .

[60]  L. Nafie,et al.  Ab initio VCD calculation of a transition-metal containing molecule and a new intensity enhancement mechanism for VCD. , 2001, Journal of the American Chemical Society.

[61]  C. Kappe,et al.  Absolute configuration in 4-alkyl- and 4-aryl-3,4-dihydro-2(1H)-pyrimidones: a combined theoretical and experimental investigation. , 2001, The Journal of organic chemistry.

[62]  A. Bergman,et al.  The absolute structures of separated PCB-methylsulfone enantiomers determined by vibrational circular dichroism and quantum chemical calculations , 2002 .

[63]  L. Nafie Adiabatic molecular properties beyond the Born–Oppenheimer approximation. Complete adiabatic wave functions and vibrationally induced electronic current density , 1983 .

[64]  M. Frisch,et al.  Hartree−Fock and Density Functional Theory ab Initio Calculation of Optical Rotation Using GIAOs: Basis Set Dependence , 2000 .

[65]  Timothy A. Keiderling,et al.  Transfer of molecular property tensors in cartesian coordinates: A new algorithm for simulation of vibrational spectra , 1997 .

[66]  Laurence A. Nafie Electron Transition Current Density in Molecules. 1. Non-Born−Oppenheimer Theory of Vibronic and Vibrational Transitions , 1997 .

[67]  Jacopo Tomasi,et al.  Vibrational circular dichroism within the polarizable continuum model: a theoretical evidence of conformation effects and hydrogen bonding for (S)-(-)-3-butyn-2-ol in CCl4 solution , 2002 .

[68]  Xiaolin Cao,et al.  Determination of the absolute configuration and solution conformation of gossypol by vibrational circular dichroism. , 2003, Chirality.

[69]  K. Frimand,et al.  SCC-TB, DFT/B3LYP, MP2, AM1, PM3 and RHF study of ethylene oxide and propylene oxide structures, VA and VCD spectra , 2002 .

[70]  M. Catellani,et al.  Absolute Configuration and Conformational Stability of (S)-(+)-3-(2-Methylbutyl)thiophene and (+)-3,4-Di[(S)-2-methylbutyl)]thiophene and Their Polymers , 2002 .