Lattice closures of polyhedra

Given $$P\subset {\mathbb {R}}^n$$ P ⊂ R n , a mixed-integer set $$P^I=P\cap ({\mathbb {Z}}^{t}\times {\mathbb {R}}^{n-t}$$ P I = P ∩ ( Z t × R n - t ), and a k -tuple of n -dimensional integral vectors $$(\pi _1, \ldots , \pi _k)$$ ( π 1 , … , π k ) where the last $$n-t$$ n - t entries of each vector is zero, we consider the relaxation of $$P^I$$ P I obtained by taking the convex hull of points x in P for which $$ \pi _1^Tx,\ldots ,\pi ^T_kx$$ π 1 T x , … , π k T x are integral. We then define the k -dimensional lattice closure of $$P^I$$ P I to be the intersection of all such relaxations obtained from k -tuples of n -dimensional vectors. When P is a rational polyhedron, we show that given any collection of such k -tuples, there is a finite subcollection that gives the same closure; more generally, we show that any k -tuple is dominated by another k -tuple coming from the finite subcollection. The k -dimensional lattice closure contains the convex hull of $$P^I$$ P I and is equal to the split closure when $$k=1$$ k = 1 . Therefore, a result of Cook et al. (Math Program 47:155–174, 1990 ) implies that when P is a rational polyhedron, the k -dimensional lattice closure is a polyhedron for $$k=1$$ k = 1 and our finiteness result extends this to all $$k\ge 2$$ k ≥ 2 . We also construct a polyhedral mixed-integer set with n integer variables and one continuous variable such that for any $$k < n$$ k < n , finitely many iterations of the k -dimensional lattice closure do not give the convex hull of the set. Our result implies that t -branch split cuts cannot give the convex hull of the set, nor can valid inequalities from unbounded, full-dimensional, convex lattice-free sets.

[1]  Yanjun Li,et al.  Cook, Kannan and Schrijver's example revisited , 2008, Discret. Optim..

[2]  Andreas S. Schulz,et al.  The Gomory-Chvátal Closure of a Non-Rational Polytope is a Rational Polytope , 2012, OR.

[3]  Gérard Cornuéjols,et al.  On the Rank of Mixed 0, 1 Polyhedra , 2001, IPCO.

[4]  H. Milton,et al.  On the Chvatal-Gomory Closure of a Compact Convex Set , 2010 .

[5]  Sanjeeb Dash,et al.  Two dimensional lattice-free cuts and asymmetric disjunctions for mixed-integer polyhedra , 2012, Math. Program..

[6]  Sanjeeb Dash,et al.  On mixed-integer sets with two integer variables , 2011, Oper. Res. Lett..

[7]  Andreas S. Schulz,et al.  The Gomory-Chvátal Closure of a Nonrational Polytope Is a Rational Polytope , 2013, Math. Oper. Res..

[8]  W. Banaszczyk New bounds in some transference theorems in the geometry of numbers , 1993 .

[9]  Matthias Köppe,et al.  The triangle closure is a polyhedron , 2011, Math. Program..

[10]  Matteo Fischetti,et al.  {0, 1/2}-Chvátal-Gomory cuts , 1996, Math. Program..

[11]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[12]  Amitabh Basu,et al.  Approximation of Corner Polyhedra with Families of Intersection Cuts , 2017, IPCO.

[13]  Gérard Cornuéjols,et al.  Maximal Lattice-Free Convex Sets in Linear Subspaces , 2010, Math. Oper. Res..

[14]  William J. Cook,et al.  Chvátal closures for mixed integer programming problems , 1990, Math. Program..

[15]  Gennadiy Averkov On finitely generated closures in the theory of cutting planes , 2012, Discret. Optim..

[16]  Daniel Dadush,et al.  The split closure of a strictly convex body , 2011, Oper. Res. Lett..

[17]  Sanjeeb Dash,et al.  On the Polyhedrality of Closures of Multibranch Split Sets and Other Polyhedra with Bounded Max-Facet-Width , 2017, SIAM J. Optim..

[18]  Alexander Schrijver,et al.  On Cutting Planes , 1980 .

[19]  Sanjeeb Dash,et al.  On t-branch split cuts for mixed-integer programs , 2013, Math. Program..

[20]  Gérard Cornuéjols,et al.  Integer Programming Models , 2021, Linear and Convex Optimization.

[21]  Robert R. Meyer,et al.  On the existence of optimal solutions to integer and mixed-integer programming problems , 1974, Math. Program..

[22]  William J. Cook,et al.  On cutting-plane proofs in combinatorial optimization , 1989 .

[23]  Alberto Del Pia,et al.  On convergence in mixed integer programming , 2012, Math. Program..

[24]  C. Zheng,et al.  ; 0 ; , 1951 .

[25]  Kent Andersen,et al.  Split closure and intersection cuts , 2002, Math. Program..

[26]  Robert Weismantel,et al.  Note on the complexity of the mixed-integer hull of a polyhedron , 2014, Oper. Res. Lett..

[27]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[28]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[29]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[30]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[31]  Andrea Lodi,et al.  MIR closures of polyhedral sets , 2009, Math. Program..

[32]  Juan Pablo Vielma A constructive characterization of the split closure of a mixed integer linear program , 2007, Oper. Res. Lett..

[33]  Sanjeeb Dash,et al.  On the polyhedrality of cross and quadrilateral closures , 2016, Math. Program..

[34]  Egon Balas,et al.  Intersection Cuts - A New Type of Cutting Planes for Integer Programming , 1971, Oper. Res..

[35]  Kent Andersen,et al.  An Analysis of Mixed Integer Linear Sets Based on Lattice Point Free Convex Sets , 2009, Math. Oper. Res..

[36]  Claus-Peter Schnorr,et al.  Geometry of Numbers and Integer Programming (Summary) , 1988, STACS.

[37]  Gérard Cornuéjols,et al.  On the rank of mixed 0,1 polyhedra , 2002, Math. Program..

[38]  Laurence A. Wolsey,et al.  Inequalities from Two Rows of a Simplex Tableau , 2007, IPCO.

[39]  Rico Zenklusen,et al.  Mixed integer reformulations of integer programs and the affine TU-dimension of a matrix , 2015, Math. Program..

[40]  Alfonso Cevallos,et al.  Lifting Linear Extension Complexity Bounds to the Mixed-Integer Setting , 2017, SODA.

[41]  Sanjeeb Dash,et al.  On the relative strength of different generalizations of split cuts , 2015, Discret. Optim..

[42]  Rico Zenklusen,et al.  Extension Complexity Lower Bounds for Mixed-Integer Extended Formulations , 2017, SODA.