MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia

Acute lymphoblastic leukemias carrying a chromosomal translocation involving the mixed-lineage leukemia gene (MLL, ALL1, HRX) have a particularly poor prognosis. Here we show that they have a characteristic, highly distinct gene expression profile that is consistent with an early hematopoietic progenitor expressing select multilineage markers and individual HOX genes. Clustering algorithms reveal that lymphoblastic leukemias with MLL translocations can clearly be separated from conventional acute lymphoblastic and acute myelogenous leukemias. We propose that they constitute a distinct disease, denoted here as MLL, and show that the differences in gene expression are robust enough to classify leukemias correctly as MLL, acute lymphoblastic leukemia or acute myelogenous leukemia. Establishing that MLL is a unique entity is critical, as it mandates the examination of selectively expressed genes for urgently needed molecular targets.

[1]  D. Tenen,et al.  Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity , 1989, The Journal of experimental medicine.

[2]  Belur V. Dasarathy,et al.  Nearest neighbor (NN) norms: NN pattern classification techniques , 1991 .

[3]  E. Remold-O’Donnell,et al.  Sequence and molecular characterization of human monocyte/neutrophil elastase inhibitor. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A. Cumano,et al.  Bipotential precursors of B cells and macrophages in murine fetal liver , 1992, Nature.

[5]  H. Alder,et al.  The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene , 1992, Cell.

[6]  Michael L. Cleary,et al.  Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias , 1992, Cell.

[7]  D. Birnbaum,et al.  Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. , 1993, Blood.

[8]  S. Korsmeyer,et al.  Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[9]  S. Korsmeyer,et al.  Altered Hox expression and segmental identity in Mll-mutant mice , 1995, Nature.

[10]  H. Kaneko,et al.  Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. , 1996, Leukemia.

[11]  M. A. Borrello,et al.  The B/macrophage cell: an elusive link between CD5+ B lymphocytes and macrophages. , 1996, Immunology today.

[12]  Keisuke Toyama,et al.  The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP96 and class I homeoprotein HOXA9 , 1996, Nature Genetics.

[13]  Takuro Nakamura,et al.  Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid leukaemias , 1996, Nature Genetics.

[14]  A. Feinberg,et al.  Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia , 1996, Nature Genetics.

[15]  I. Bernstein,et al.  Human homologue of the rat chondroitin sulfate proteoglycan, NG2, detected by monoclonal antibody 7.1, identifies childhood acute lymphoblastic leukemias with t(4;11)(q21;q23) or t(11;19)(q23;p13) and MLL gene rearrangements. , 1996, Blood.

[16]  M. Minden,et al.  Expression of rhombotin 2 in normal and leukaemic haemopoietic cells , 1996, British journal of haematology.

[17]  Calvin L. Williams,et al.  Modern Applied Statistics with S-Plus , 1997 .

[18]  M. Greaves,et al.  Multilineage gene expression precedes commitment in the hemopoietic system. , 1997, Genes & development.

[19]  S. Korsmeyer,et al.  Defects in yolk sac hematopoiesis in Mll-null embryos. , 1997, Blood.

[20]  J. Kearney,et al.  AC133, a novel marker for human hematopoietic stem and progenitor cells. , 1997, Blood.

[21]  I. Weissman,et al.  Identification of Clonogenic Common Lymphoid Progenitors in Mouse Bone Marrow , 1997, Cell.

[22]  T. Golub,et al.  Incidence of TEL/AML1 fusion in children with relapsed acute lymphoblastic leukemia. , 1998, Blood.

[23]  F. Alt,et al.  Late embryonic lethality and impaired V (D)J recombination in mice lacking DNA ligase IV , 1998, Nature.

[24]  K. Matsumoto,et al.  Murine Nkg2d and Cd94 are clustered within the natural killer complex and are expressed independently in natural killer cells. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. V. van Dongen,et al.  Intensified therapy for infants with acute lymphoblastic leukemia , 1998 .

[26]  J. Rowley,et al.  The critical role of chromosome translocations in human leukemias. , 1998, Annual review of genetics.

[27]  E. Thiel,et al.  Immunophenotypic and genotypic features, clinical characteristics, and treatment outcome of adult pro-B acute lymphoblastic leukemia: results of the German multicenter trials GMALL 03/87 and 04/89. , 1998, Blood.

[28]  M. D. Boer,et al.  Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia–implications for treatment of infants , 1998, Leukemia.

[29]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[30]  R. D. Hanson,et al.  Mammalian Trithorax and polycomb-group homologues are antagonistic regulators of homeotic development. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Lübbert,et al.  Cyclin A1 expression in leukemia and normal hematopoietic cells. , 1999, Blood.

[32]  F. Alt,et al.  Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85alpha. , 1999, Science.

[33]  M. Cleary,et al.  MLL rearrangements in haematological malignancies: lessons from clinical and biological studies , 1999, British journal of haematology.

[34]  C. Murre Role of helix-loop-helix proteins in lymphocyte development. , 1999, Cold Spring Harbor symposia on quantitative biology.

[35]  Stephen L. Nutt,et al.  Commitment to the B-lymphoid lineage depends on the transcription factor Pax5 , 1999, Nature.

[36]  C. Buske,et al.  Homeobox genes in leukemogenesis. , 2000, International journal of hematology.

[37]  D. Small,et al.  Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation , 2000, Leukemia.

[38]  T. Lebien,et al.  Fates of human B-cell precursors. , 2000, Blood.

[39]  S. McCullough,et al.  Sensitivity of FISH in detection of MLL translocations , 2000, Genes, chromosomes & cancer.

[40]  S. Ōmura,et al.  In vivo treatment of mutant FLT3-transformed murine leukemia with a tyrosine kinase inhibitor , 2000, Leukemia.

[41]  C. Croce,et al.  Upregulation of Meis1 and HoxA9 in acute lymphocytic leukemias with the t(4 : 11) abnormality , 2001, Oncogene.

[42]  C. Bloomfield,et al.  All-trans-Retinoic Acid in Acute Promyelocytic Leukemia , 2000 .

[43]  C. Sawyers,et al.  Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. , 2001, The New England journal of medicine.

[44]  R. Hardy,et al.  B cell development pathways. , 2001, Annual review of immunology.

[45]  A. Rolink,et al.  B cell development and immunoglobulin gene transcription in the absence of Oct-2 and OBF-1 , 2001, Nature Immunology.

[46]  E. Montecino-Rodriguez,et al.  Bipotential B-macrophage progenitors are present in adult bone marrow , 2001, Nature Immunology.