Hierarchical Cu4V2.15O9.38 micro-/nanostructures: a lithium intercalating electrode material.

Hierarchical Cu4V2.15O9.38 micro-/nanostructures have been prepared by a facile "forced hydrolysis" method, from an aqueous peroxovanadate and cupric nitrate solution in the presence of urea. The hierarchical architectures with diameters of 10-20 µm are assembled from flexible nanosheets and rigid nanoplates with widths of 2-4 µm and lengths of 5-10 µm in a radiative way. The preliminary electrochemical properties of Cu4V2.15O9.38 have been investigated for the first time and correlated with its structure. This material delivers a large discharge capacity of 471 mA h g(-1) above 1.5 V, thus making it an interesting electrode material for primary lithium ion batteries used in implantable cardioverter defibrillators.

[1]  A. Marschilok,et al.  Electrochemical Reduction of Silver Vanadium Phosphorous Oxide, Ag(2)VO(2)PO(4): Silver Metal Deposition and Associated Increase in Electrical Conductivity. , 2010, Journal of power sources.

[2]  J. Tarascon,et al.  Ag(6)Mo(2)O(7)F(3)Cl: a new silver cathode material for enhanced ICD primary lithium batteries. , 2010, Inorganic chemistry.

[3]  J. Tarascon,et al.  Room-temperature synthesis leading to nanocrystalline Ag(2)V(4)O(11). , 2010, Journal of the American Chemical Society.

[4]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[5]  J. Vaughey,et al.  Ag3Fe(VO4)2 and AgFeV2O7: Synthesis, Structure, and Electrochemical Characteristics of Two New Silver Iron(III) Vanadates† , 2010 .

[6]  Jean-Marie Tarascon,et al.  Hunting for Better Li-Based Electrode Materials via Low Temperature Inorganic Synthesis† , 2010 .

[7]  A. Marschilok,et al.  Electrochemical reduction of silver vanadium phosphorous oxide, Ag(2)VO(2)PO(4): the formation of electrically conductive metallic silver nanoparticles. , 2009, Chemistry of materials : a publication of the American Chemical Society.

[8]  J. Tarascon,et al.  Room Temperature Synthesis of the Larger Power, High Silver Density Cathode Material Ag4V2O6F2 for Implantable Cardioverter Defibrillators , 2009 .

[9]  G. Amatucci,et al.  A Novel Silver Molybdenum Oxyfluoride Perovskite as a Cathode Material for Lithium Batteries , 2009 .

[10]  Jun Chen,et al.  Combination of lightweight elements and nanostructured materials for batteries. , 2009, Accounts of chemical research.

[11]  Fengjia Fan,et al.  Superlong beta-AgVO3 nanoribbons: high-yield synthesis by a pyridine-assisted solution approach, their stability, electrical and electrochemical properties. , 2009, ACS nano.

[12]  Jean-Marie Tarascon,et al.  Eco-Efficient Synthesis of LiFePO4 with Different Morphologies for Li-Ion Batteries , 2009 .

[13]  Thomas A. Albrecht,et al.  Ag4V2O6F2 (SVOF): a high silver density phase and potential new cathode material for implantable cardioverter defibrillators. , 2008, Inorganic chemistry.

[14]  J. Zou,et al.  Green synthesis of hexagonal-shaped WO3 center dot 0.33H(2)O nanodiscs composed of nanosheets , 2008 .

[15]  A. Marschilok,et al.  Preparation and Electrochemistry of Silver Vanadium Phosphorous Oxide, Ag2VO2PO4 , 2008 .

[16]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[17]  Ying Wang,et al.  Developments in Nanostructured Cathode Materials for High‐Performance Lithium‐Ion Batteries , 2008 .

[18]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[19]  Jun Chen,et al.  Alpha-CuV2O6 nanowires: hydrothermal synthesis and primary lithium battery application. , 2008, Journal of the American Chemical Society.

[20]  M. Armand,et al.  Building better batteries , 2008, Nature.

[21]  Jing Liang,et al.  Template-Directed Materials for Rechargeable Lithium-Ion Batteries† , 2008 .

[22]  Chang Ming Li,et al.  Lithium Insertion in Channel-Structured β-AgVO3: In Situ Raman Study and Computer Simulation , 2007 .

[23]  Craig L. Schmidt,et al.  Hybrid cathode lithium batteries for implantable medical applications , 2006 .

[24]  Weiyang Li,et al.  Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/microstructures. , 2006, The journal of physical chemistry. B.

[25]  Hui Zhan,et al.  Synthesis of CuV2O6 as a cathode material for rechargeable lithium batteries from V2O5 gel , 2006 .

[26]  S. Pang,et al.  Environmentally friendly chemical route to vanadium oxide single-crystalline nanobelts as a cathode material for lithium-ion batteries. , 2006, The journal of physical chemistry. B.

[27]  G. Cao,et al.  Effects of Thermal Annealing on the Li+ Intercalation Properties of V2O5·nH2O Xerogel Films , 2005 .

[28]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[29]  C. Stern,et al.  Ag4V2O6F2: an electrochemically active and high silver density phase. , 2005, Journal of the American Chemical Society.

[30]  J. Tarascon,et al.  Evidence of an Electrochemically Assisted Ion Exchange Reaction in Cu2.33V4O11 Electrode Material vs. Li , 2005 .

[31]  J. Tarascon,et al.  Solid Solution (Li1.3-yCuy)V3O8: Structure and Electrochemistry , 2005 .

[32]  J. Tarascon,et al.  Cu1.1V4O11: A new positive electrode material for rechargeable Li batteries , 2005 .

[33]  Paul M. Skarstad,et al.  Battery and capacitor technology for uniform charge time in implantable cardioverter-defibrillators , 2004 .

[34]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[35]  Josh Thomas A spectacularly reactive cathode , 2003, Nature materials.

[36]  J. Tarascon,et al.  A reversible copper extrusion–insertion electrode for rechargeable Li batteries , 2003, Nature materials.

[37]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[38]  K. Takeuchi Silver vanadium oxides and related battery applications , 2001 .

[39]  Roland Staub,et al.  Primary batteries for implantable pacemakers and defibrillators , 2001 .

[40]  Craig L. Schmidt,et al.  Evolution of power sources for implantable cardioverter defibrillators , 2001 .

[41]  E. Matijević,et al.  Homogeneous Precipitation of Calcium Carbonates by Enzyme Catalyzed Reaction. , 2001, Journal of colloid and interface science.

[42]  J. Livage,et al.  Synthesis of Vanadium Oxide Gels from Peroxovanadic Acid Solutions: A 51V NMR Study , 1999 .

[43]  Wang,et al.  Preparation of Uniform Needle-Like Aragonite Particles by Homogeneous Precipitation. , 1999, Journal of colloid and interface science.

[44]  Mika Eguchi,et al.  Lithiation characteristics of α-CuV2O6 and other nCuO · V2O5 oxides , 1996 .

[45]  Mika Eguchi,et al.  Lithiation characteristics of Cu5V2O10 , 1996 .

[46]  E. Matijević,et al.  Preparation and properties of uniform colloidal metal phosphates IV. Cadmium-, nickel-, and manganese(II)-phosphates , 1989 .

[47]  J. Livage,et al.  Vanadium pentoxide gels , 1983 .

[48]  H. Müller-Buschbaum,et al.  Über ein neues Kupfervanadat: Cu4V2.15O 9.38 / About Cu4V2,15O9.38 , 1975 .