High-Power Solid-State Lasers from a Laser Glass Perspective

Advances in laser glass compositions and manufacturing have enabled a new class of high-energy/high-power (HEHP), petawatt (PW) and high-average-power (HAP) laser systems that are being used for fusion energy ignition demonstration, fundamental physics research and materials processing, respectively. The requirements for these three laser systems are different necessitating different glasses or groups of glasses. The manufacturing technology is now mature for melting, annealing, fabricating and finishing of laser glasses for all three applications. The laser glass properties of major importance for HEHP, PW and HAP applications are briefly reviewed and the compositions and properties of the most widely used commercial laser glasses summarized. Proposed advances in these three laser systems will require new glasses and new melting methods which are briefly discussed. The challenges presented by these laser systems will likely dominate the field of laser glass development over the next several decades.

[1]  David C. Brown High-Peak-Power Nd: Glass Laser Systems , 1981 .

[2]  John E. Marion,et al.  Appropriate use of the strength parameter in solid-state slab laser design , 1987 .

[3]  Ian M. Thomas,et al.  Optical properties and laser demonstrations of Nd-doped sol-gel silica glasses , 1992 .

[4]  R. G. Adams,et al.  Z-Beamlet: a multikilojoule, terawatt-class laser system. , 2005, Applied optics.

[5]  Joseph S. Hayden,et al.  Advances In Glasses For High Average Power Laser Systems , 1989, Other Conferences.

[6]  William F. Krupke,et al.  Induced-emission cross sections in neodymium laser glasses , 1974 .

[7]  J. Lindl,et al.  Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive , 1998 .

[8]  Jack H. Campbell,et al.  Nonradiative Energy Losses and Radiation Trapping in Neodymium‐Doped Phosphate Laser Glasses , 2004 .

[9]  Mary A. Norton,et al.  Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction , 1995 .

[10]  Michael D. Perry,et al.  Ignition and high gain with ultrapowerful lasers , 1994 .

[11]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[12]  Michael Bass,et al.  Solid-State Lasers: A Graduate Text , 2003 .

[13]  H T Powell,et al.  Petawatt laser pulses. , 1999, Optics letters.

[14]  P. Miller,et al.  Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces. , 2010, Optics letters.

[15]  S. Sutton,et al.  National Ignition Facility laser performance status. , 2007, Applied optics.

[16]  Per F. Peterson,et al.  A Sustainable Nuclear Fuel Cycle Based on Laser Inertial Fusion Energy , 2009 .

[17]  Michael D. Perry,et al.  Ultrahigh‐Intensity Lasers: Physics of the Extreme on a Tabletop , 1998 .

[18]  Edward I. Moses,et al.  The National Ignition Facility: Ushering in a new age for high energy density science , 2009 .

[19]  Takashi Handa,et al.  Aluminum or phosphorus co‐doping effects on the fluorescence and structural properties of neodymium‐doped silica glass , 1986 .

[20]  Hiroshi Azechi,et al.  The FIREX Program on the Way to Inertial Fusion Energy , 2008 .

[21]  Tayyab I. Suratwala,et al.  Metallic-like photoluminescence and absorption in fused silica surface flaws , 2009 .

[22]  Michael J. Runkel,et al.  NIF optical materials and fabrication technologies: an overview , 2004, SPIE LASE.

[23]  S. Skupsky,et al.  Progress in direct-drive inertial confinement fusion , 2004 .

[24]  Joseph S. Hayden,et al.  Technical Advances in the Continuous Melting of Phosphate Laser Glass , 2001 .

[25]  N. Zaitseva,et al.  Rapid growth of KDP-type crystals , 2001 .

[26]  S. E. Stokowski,et al.  Nd-doped laser glass spectroscopic and physical properties , 1981 .

[27]  A. Owyoung,et al.  Empirical relationships for predicting nonlinear refractive index changes in optical solids , 1978 .

[28]  J. E. Peterson,et al.  Gratings for high-energy petawatt lasers , 2005, SPIE Laser Damage.

[29]  Joseph S. Hayden,et al.  Effects of melting conditions on platinum-inclusion content in phosphate laser glasses , 1995 .

[30]  Y. Fujimoto,et al.  A novel method for uniform dispersion of the rare earth ions in SiO2 glass using zeolite X , 1997 .

[31]  E. P. Wallerstein,et al.  Large Scale Damage Testing in a Production Environment , 1988 .

[32]  Xiaodong Yuan,et al.  Status of the SG-III solid-state laser facility , 2008 .

[33]  Joseph S. Hayden,et al.  Laser properties of a new average-power Nd-doped phosphate glass , 1995 .

[34]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[35]  Joseph S. Hayden,et al.  Continuous melting of phosphate laser glasses , 2000 .

[36]  D. C. Hanna,et al.  Laser performance of a new ytterbium doped phosphate laser glass , 1996 .

[37]  虎溪 久良 Properties of laser glasses , 1989 .

[38]  Tayyab I. Suratwala,et al.  Nd-doped phosphate glasses for high-energy/high-peak-power lasers , 2000 .

[39]  Joseph S. Hayden,et al.  Effect of composition on the thermal, mechanical, and optical properties of phosphate laser glasses , 1990, Other Conferences.

[40]  J Ebrardt,et al.  LMJ on its way to fusion , 2010 .

[41]  E. Snitzer Optical Maser Action of Nd + 3 in a Barium Crown Glass , 1961 .

[42]  J H Campbell Damage Resistant Optical Glasses for High Power Lasers: A Continuing Glass Science and Technology Challenge , 2002 .

[43]  Edward I. Moses,et al.  The National Ignition Facility: the world's largest optics and laser system , 2003, SPIE LASE.

[44]  Shibin Jiang,et al.  Chemically stregthened Er3+, Nd3+ doped phosphate laser glasses , 1995, Photonics West.

[45]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[46]  Helmuth E. Meissner,et al.  Ion-exchange strengthening of high-average-power phosphate laser glass , 1991, Laser Damage.

[47]  Michael D. Feit,et al.  Toward Deterministic Material Removal and Surface Figure During Fused Silica Pad Polishing , 2010 .

[48]  Andy J. Bayramian,et al.  Nd:Glass Laser Design for Laser ICF Fission Energy (LIFE) , 2009 .

[49]  Samuel A. Letzring,et al.  Initial performance results of the OMEGA laser system , 1997 .

[50]  L. Ye,et al.  Laser shock peening Performance and process simulation , 2006 .

[51]  J. Marion,et al.  Strengthened solid-state laser materials , 1985 .

[52]  A. Kruusing Handbook of Liquids-Assisted Laser Processing , 2007 .

[53]  Joseph S. Hayden,et al.  Elimination of platinum inclusions in phosphate laser glasses , 1989 .

[54]  Donald P. Umstadter,et al.  Physics and Applications of Relativistic Plasmas Driven by Ultra-intense Lasers , 2001 .

[55]  I C Smith,et al.  Performance of a prototype for a large-aperture multipass Nd:glass laser for inertial confinement fusion. , 1997, Applied optics.

[56]  Y. Fujimoto,et al.  Development of Nd-doped Optical Gain Material Based on Silica Glass with High Thermal Shock Parameter for High-Average-Power Laser , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[57]  Broad-spectrum neodymium-doped laser glasses for high-energy chirped-pulse amplification. , 2007, Applied optics.

[58]  Joseph S. Hayden,et al.  Dehydroxylation of phosphate laser glass , 2000, SPIE Optics + Photonics.

[59]  John H. Campbell,et al.  Neodymium Fluorescence Quenching by Hydroxyl Groups in Phosphate Laser Glasses , 2004 .

[60]  K. Manes,et al.  Hot images from obscurations. , 1993, Applied optics.

[61]  Y. Fujimoto,et al.  Laser Oscillation of Nd-Doped Silica Glass with High Thermal Shock Parameter , 2006 .

[62]  L. L. Wong,et al.  HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces , 2011 .

[63]  G. Mourou,et al.  Terawatt to Petawatt Subpicosecond Lasers , 1994, Science.

[64]  E. P. Wallerstein,et al.  Effects of process gas environment on platinum-inclusion density and dissolution rate in phosphate laser glasses , 1995 .

[65]  Xiantu He,et al.  Inertial fusion research in China , 2007 .

[66]  K. Matsunaga Theoretical Defect Energetics in Calcium Phosphate Bioceramics , 2010 .

[67]  John T. Hunt,et al.  Present And Future Performance Of The Nova Laser System , 1989 .

[68]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[69]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[70]  R. Powell Physics of Solid-State Laser Materials , 1998 .

[71]  John E. Marion,et al.  Fracture of solid state laser slabs , 1986 .

[72]  E. Moses,et al.  The National Ignition Facility , 2004 .