THE SIGNATURE OF GALACTIC TIDES IN LOCAL GROUP DWARF SPHEROIDALS

We use N-body simulations to explore the effects of tidal stripping on the structure of dwarf spheroidal galaxies (dSphs). Our models assume cosmologically motivated initial conditions where dSphs are modeled as King spheres, embedded in Navarro-Frenk-White dark halos and orbiting the Galactic potential on eccentric orbits. As expected, systems that orbit through dense regions of the Galaxy lose a significant fraction of stars after each pericentric passage. These episodes of mass loss, however, do not impose a clear tidal cutoff on the bound stellar core. Rather, once equilibrium has been re-established the outer mass profile approaches a power law well described by a simple Plummer model. As noted in earlier work, tides also result in transient features in the outer density profile. As the system relaxes, an outward-moving "excess" of stars is found at radii where the local crossing time exceeds the time elapsed since pericenter. If the orbit of the dSph is known, these results provide a simple way to assess whether "breaks" and "bumps" in the outer profile of dSphs are actually tidal in origin. We apply this to the Sagittarius dwarf and, encouragingly, identify two features in the surface brightness profile that may be traced to its two last pericentric passages. Applied to Leo I, our results predict that any tidal break would occur at radii beyond those surveyed by current data, casting doubt on recent claims of the detection of tidal debris around this galaxy. For Carina, our model indicates that the tidal break should occur at a radius twice farther than observed. This suggests that the outer excess of stars in Carina is not tidal in origin unless its orbit is in error. A similar comment applies to Sculptor, whose pericenter appears too large for Galactic tides to be important but whose outer profile, like that of Draco, nonetheless follows closely a Plummer law. Fornax and Leo II show no sign of a power-law outer profile, suggesting that they have not been significantly affected by tides. Published profiles for other Milky Way dSph companions do not extend sufficiently far to allow for conclusive assessment. Panoramic surveys that extend surface brightness profiles beyond ~10 core radii, together with improved constraints on the orbital parameters of dSphs, are needed in order to establish the true origin of the outer envelopes of stars surrounding dSphs.

[1]  Proper Motions of Dwarf Spheroidal Galaxies fromHubble Space TelescopeImaging. III. Measurement for Ursa Minor , 2003 .

[2]  S. White,et al.  The density profiles of tidally stripped galaxies , 1986 .

[3]  The DART Imaging And CaT Survey of the Fornax Dwarf Spheroidal Galaxy , 2006, astro-ph/0608370.

[4]  Sangmo Tony Sohn,et al.  Exploring Halo Substructure with Giant Stars. XI. The Tidal Tails of the Carina Dwarf Spheroidal Galaxy and the Discovery of Magellanic Cloud Stars in the Carina Foreground , 2006, astro-ph/0605098.

[5]  S. Majewski,et al.  Modeling the Structure and Dynamics of Dwarf Spheroidal Galaxies with Dark Matter and Tides , 2007, 0712.4312.

[6]  J. Aguerri,et al.  On the origin of dwarf elliptical galaxies: the fundamental plane , 2008, 0811.2228.

[7]  Avon Huxor,et al.  Andromeda XVII: A New Low-Luminosity Satellite of M31 , 2008, 0802.0698.

[8]  A. D. Mackey,et al.  Stellar kinematics and metallicities in the Leo I dwarf spheroidal galaxy -- wide field implications for galactic evolution , 2007 .

[9]  The distance to the Leo I dwarf spheroidal galaxy from the red giant branch tip , 2004, astro-ph/0407444.

[10]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[11]  P. Kroupa,et al.  SUPERBOX – an efficient code for collisionless galactic dynamics , 2000 .

[12]  Alan W. McConnachie,et al.  The Tidal Evolution of Local Group Dwarf Spheroidals , 2007, 0708.3087.

[13]  Ivan R. King,et al.  The structure of star clusters. I. an empirical density law , 1962 .

[14]  W. Jaffe The Envelopes of Spherical Galaxies , 1987 .

[15]  M. Castellani,et al.  Stellar Populations in the Dwarf Spheroidal Galaxy Leo I , 1998, astro-ph/9812266.

[16]  M. Mateo,et al.  Systemic Proper Motions of Milky Way Satellites from Stellar Redshifts: The Carina, Fornax, Sculptor, and Sextans Dwarf Spheroidals , 2008, 0810.1511.

[17]  Joachim Stadel,et al.  Tidal debris of dwarf spheroidals as a probe of structure formation models , 2001, astro-ph/0110386.

[18]  I. Saviane,et al.  The distance to the Fornax dwarf spheroidal galaxy , 2007, 0707.0521.

[19]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[20]  Sverre J. Aarseth,et al.  On the Tidal Disruption of Dwarf Spheroidal Galaxies around the Galaxy , 1995 .

[21]  S. Majewski,et al.  Exploring Halo Substructure with Giant Stars. IV. The Extended Structure of the Ursa Minor Dwarf Spheroidal Galaxy , 2002, astro-ph/0205194.

[22]  Zeljko Ivezic,et al.  Andromeda IX: A New Dwarf Spheroidal Satellite of M31 , 2004 .

[23]  Jr.,et al.  A New Milky Way Dwarf Galaxy in Ursa Major , 2005, astro-ph/0503552.

[24]  S. White,et al.  Dissipationless Formation of Elliptical Galaxies , 1987 .

[25]  P. Frinchaboy,et al.  Exploring Halo Substructure with Giant Stars: The Velocity Dispersion Profiles of the Ursa Minor and Draco Dwarf Spheroidal Galaxies at Large Angular Separations , 2005, astro-ph/0504035.

[26]  M. Mateo,et al.  Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. III. Measurement for Ursa Minor , 2003, astro-ph/0503620.

[27]  Mario Mateo,et al.  The Velocity Dispersion Profile of the Remote Dwarf Spheroidal Galaxy Leo I: A Tidal Hit and Run? , 2007, 0708.1327.

[28]  Mike Irwin,et al.  Structural parameters for the Galactic dwarf spheroidals , 1995 .

[29]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[30]  P. Madau,et al.  Dark Matter Subhalos and the Dwarf Satellites of the Milky Way , 2008, 0802.2265.

[31]  M. F. Skrutskie,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms , 2003, astro-ph/0304198.

[32]  Rachel S. Somerville,et al.  ΛCDM-based Models for the Milky Way and M31. I. Dynamical Models , 2001, astro-ph/0110390.

[33]  Tucson,et al.  Leo V: A Companion of a Companion of the Milky Way Galaxy? , 2008, 0807.2831.

[34]  Daniel B. Zucker,et al.  Andromeda X, a New Dwarf Spheroidal Satellite of M31: Photometry , 2006, astro-ph/0601599.

[35]  R. Ibata,et al.  The Haunted Halos of Andromeda and Triangulum: A Panorama of Galaxy Formation in Action , 2007, 0704.1318.

[36]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[37]  H. Plummer On the Problem of Distribution in Globular Star Clusters: (Plate 8.) , 1911 .

[38]  B. Yanny,et al.  A Faint New Milky Way Satellite in Bootes , 2006, astro-ph/0604355.

[39]  A tidal extension in the ursa minor dwarf spheroidal galaxy , 2001, astro-ph/0101456.

[40]  T. Girard,et al.  Absolute Proper Motion of the Sagittarius Dwarf Galaxy and of the Outer Regions of the Milky Way Bulge , 2004 .

[41]  H. Rix,et al.  A Wide-Field View of Leo II: A Structural Analysis Using the Sloan Digital Sky Survey , 2007, 0708.1853.

[42]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[43]  Sangmo Tony Sohn,et al.  Exploring Halo Substructure with Giant Stars. X. Extended Dark Matter or Tidal Disruption?: The Case for the Leo I Dwarf Spheroidal Galaxy , 2007 .

[44]  A. McConnachie,et al.  Multiple dynamical components in Local Group dwarf spheroidals , 2006, astro-ph/0608687.

[45]  Effects of dynamical evolution on the distribution of substructures , 2004, astro-ph/0412370.

[46]  Puragra Guhathakurta,et al.  Interpreting the Morphology of Diffuse Light around Satellite Galaxies , 2001, astro-ph/0111466.

[47]  Puragra Guhathakurta,et al.  Discovery of Andromeda XIV: A Dwarf Spheroidal Dynamical Rogue in the Local Group? , 2007, astro-ph/0702635.

[48]  A. Kravtsov,et al.  The Robustness of Dark Matter Density Profiles in Dissipationless Mergers , 2005, astro-ph/0510583.

[49]  Ben Moore,et al.  Generating Equilibrium Dark Matter Halos: Inadequacies of the Local Maxwellian Approximation , 2003, astro-ph/0309517.

[50]  J. Aguerri,et al.  Harassment Origin for Kinematic Substructures in Dwarf Elliptical Galaxies , 2005, astro-ph/0508610.

[51]  Beth Willman,et al.  A common mass scale for satellite galaxies of the Milky Way , 2008, Nature.

[52]  Alan McConnachie,et al.  The Cold Dark Matter Halos of Local Group Dwarf Spheroidals , 2007 .

[53]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[54]  L. Hebb,et al.  Discovery of an unusual dwarf galaxy in the outskirts of the Milky Way , 2007 .

[55]  University of Durham,et al.  The effects of photoionization on galaxy formation – I. Model and results at z=0 , 2002 .

[56]  Gary A. Mamon,et al.  Mass modelling of dwarf spheroidal galaxies: the effect of unbound stars from tidal tails and the Milky Way , 2007 .

[57]  Exploring Halo Substructure with Giant Stars. II. Mapping the Extended Structure of the Carina Dwarf Spheroidal Galaxy , 1999, astro-ph/9911191.

[58]  B. Yanny,et al.  A New Milky Way Dwarf Satellite in Canes Venatici , 2006 .

[59]  J. Navarro On the density structure of galaxy merger remnants , 1990 .

[60]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[61]  Ivan R. King,et al.  The structure of star clusters. III. Some simple dvriamical models , 1966 .

[62]  N. F. Martin,et al.  A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies , 2007, 0705.4622.

[63]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[64]  About the morphology of dwarf spheroidal galaxies and their dark matter content , 2002, astro-ph/0207467.

[65]  L. Mayer,et al.  The anatomy of Leo I: how tidal tails affect the kinematics , 2008, 0804.0204.

[66]  Andreas Koch,et al.  The Observed Properties of Dark Matter on Small Spatial Scales , 2007 .

[67]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[68]  Fnal,et al.  The Field of Streams: Sagittarius and its Siblings , 2006, astro-ph/0605025.

[69]  Avon Huxor,et al.  A Trio of New Local Group Galaxies with Extreme Properties , 2008, 0806.3988.

[70]  V. Debattista,et al.  Morphological evolution of discs in clusters , 2005 .

[71]  Mario Mateo,et al.  Velocity Dispersion Profiles of Seven Dwarf Spheroidal Galaxies , 2007, 0708.0010.

[72]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[73]  M. Irwin,et al.  THE NUCLEUS OF THE SAGITTARIUS DSPH GALAXY AND M54: A WINDOW ON THE PROCESS OF GALAXY NUCLEATION , 2008, 0807.0105.

[74]  Kyle B. Westfall,et al.  EXPLORING HALO SUBSTRUCTURE WITH GIANT STARS. VIII. THE EXTENDED STRUCTURE OF THE SCULPTOR DWARF SPHEROIDAL GALAXY , 2006 .

[75]  B. Yanny,et al.  Cats and dogs, hair and a hero: A quintet of new milky way companions , 2006 .

[76]  N. Wyn Evans,et al.  The importance of tides for the Local Group dwarf spheroidals , 2006 .

[77]  M. Mateo,et al.  Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. IV: Measurement for Sculptor , 2006, astro-ph/0612705.

[78]  R. Wechsler,et al.  Galaxy halo occupation at high redshift , 2001, astro-ph/0106293.

[79]  Heidelberg,et al.  A Comprehensive Maximum Likelihood Analysis of the Structural Properties of Faint Milky Way Satellites , 2008, 0805.2945.

[80]  J. Stadel,et al.  Clumps and streams in the local dark matter distribution , 2008, Nature.

[81]  Carlos S. Frenk,et al.  A recipe for galaxy formation , 1994 .

[82]  R. Link,et al.  Exploring Halo Substructure with Giant Stars. VI. Extended Distributions of Giant Stars around the Carina Dwarf Spheroidal Galaxy: How Reliable Are They? , 2005, astro-ph/0503627.

[83]  Subaru Telescope,et al.  A Curious Milky Way Satellite in Ursa Major , 2006, astro-ph/0606633.