Adaptation of speech recognition vocabularies for improved transcription of YouTube videos

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Adaptation of speech recognition vocabularies for improved transcription of YouTube videos Denis Jouvet, David Langlois, Mohamed Menacer, Dominique Fohr, Odile Mella, Kamel Smaïli

[1]  Ronald Rosenfeld,et al.  Optimizing lexical and N-gram coverage via judicious use of linguistic data , 1995, EUROSPEECH.

[2]  Josef van Genabith,et al.  The Floating Arabic Dictionary: An Automatic Method for Updating a Lexical Database through the Detection and Lemmatization of Unknown Words , 2012, COLING.

[3]  Karima Meftouh,et al.  MODELING ARABIC LANGUAGE USING STATISTICAL METHODS , 2010 .

[4]  Josef van Genabith,et al.  Handling Unknown Words in Statistical Latent-Variable Parsing Models for Arabic, English and French , 2010, SPMRL@NAACL-HLT.

[5]  Daniel Povey,et al.  The Kaldi Speech Recognition Toolkit , 2011 .

[6]  Tara N. Sainath,et al.  The shared views of four research groups ) , 2012 .

[7]  Karen Spärck Jones,et al.  Effects of out of vocabulary words in spoken document retrieval (poster session) , 2000, SIGIR '00.

[8]  Alexander I. Rudnicky,et al.  Learning OOV through semantic relatedness in spoken dialog systems , 2015, INTERSPEECH.

[9]  Helmut Schmidt,et al.  Probabilistic part-of-speech tagging using decision trees , 1994 .

[10]  Yonghong Yan,et al.  An unsupervised vocabulary selection technique for Chinese automatic speech recognition , 2016, 2016 IEEE Spoken Language Technology Workshop (SLT).

[11]  Wen Wang,et al.  Techniques for effective vocabulary selection , 2003, INTERSPEECH.

[12]  Karima Meftouh,et al.  Comparative Study of Arabic and French Statistical Language Models , 2009, ICAART.

[13]  Satoshi Takahashi,et al.  Automatic Vocabulary Adaptation Based on Semantic and Acoustic Similarities , 2014, IEICE Trans. Inf. Syst..

[14]  Krister Lindén,et al.  A Probabilistic Model for Guessing Base Forms of New Words by Analogy , 2008, CICLing.

[15]  Denis Jouvet,et al.  A Machine Learning Based Approach for Vocabulary Selection for Speech Transcription , 2013, TSD.

[16]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.