First Principles Calculation of Electrode Material for Lithium Intercalation Batteries: TiS2 and LiTi2S4 Cubic Spinel Structures

Abstract The cubic spinel structures, TiS 2 and LiTI 2 S 4 , have been fully optimized using the full-potential linearized augmented-plane-wave (LAPW) method. The comparison between band structures of TiS 2 and LiTi 2 S 4 and the analogous oxide structures indicates that bonding in sulfides is more covalent. Bonding of both sulfides and oxides becomes more ionic after Li intercalation. The calculated average intercalation voltage of 2.16 eV (LiTi 2 S 4 ) and 2.93 eV (LiTi 2 O 4 ) is in good agreement with experimental data. The higher voltage of oxide is due to the larger change of enthalpy of formation between reactants and products.

[1]  E. Deiss,et al.  THEORETICAL STUDY OF THE INTERCALATION OF LI INTO TIO2 STRUCTURES , 1999 .

[2]  D. Koelling,et al.  A technique for relativistic spin-polarised calculations , 1977 .

[3]  Christopher M Wolverton,et al.  First-Principles Prediction of Vacancy Order-Disorder and Intercalation Battery Voltages in Li x CoO 2 , 1998 .

[4]  R. Hoffman Solids and Surfaces: A Chemist's View of Bonding in Extended Structures , 1989 .

[5]  L. Benco Crystal orbital scheme for Si3N4 , 1998 .

[6]  T. Ohzuku,et al.  Carbon materials for lithium-ion (shuttlecock) cells , 1994 .

[7]  M. Broussely,et al.  LixNiO2, a promising cathode for rechargeable lithium batteries , 1995 .

[8]  D. Murphy,et al.  The crystal structures of the lithium-inserted metal oxides Li0.5TiO2 anatase, LiTi2O4 spinel, and Li2Ti2O4 , 1984 .

[9]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[10]  K. Jirage,et al.  Chemical‐Vapor Deposition‐Based Template Synthesis of Microtubular TiS2 Battery Electrodes , 1997 .

[11]  David J. Singh Planewaves, Pseudopotentials, and the LAPW Method , 1993 .

[12]  Claude Daul,et al.  Average Voltage, Energy Density, and Specific Energy of Lithium‐Ion Batteries Calculation Based on First Principles , 1997 .

[13]  J. Dahn,et al.  Lattice-gas model to understand voltage profiles of LiNi x Mn 2 − x O 4 / L i electrochemical cells , 1997 .

[14]  Gerbrand Ceder,et al.  Ab initio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries , 1997 .

[15]  L. Benco Crystal orbital schemes for solids. Titanium and vanadium monocarbides and mononitrides , 1995 .

[16]  Bernard Agruss,et al.  Power Sources 6 , 1978 .

[17]  M. Koizumi,et al.  Magnetic phase transition in (Mn0.95Ni0.05)3B4 , 1983 .

[18]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[19]  E. Deiss,et al.  First-principles prediction of voltages of lithiated oxides for lithium-ion batteries , 1998 .

[20]  A. Balchin,et al.  Observation of intermediate phases during the lithium intercalation of TiX2(X = S, Se) , 1983 .

[21]  G. Pistoia,et al.  Direct comparison of cathode materials of interest for secondary high-rate lithium cells , 1992 .

[22]  K. Brandt,et al.  Historical development of secondary lithium batteries , 1994 .

[23]  Christopher M Wolverton,et al.  Prediction of Li Intercalation and Battery Voltages in Layered vs. Cubic Li[sub x]CoO[sub 2] , 1998 .

[24]  C. Umrigar,et al.  Band structure, intercalation, and interlayer interactions of transition-metal dichalcogenides: Ti S 2 and LiTi S 2 , 1982 .

[25]  Kazunori Ozawa,et al.  Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system , 1994 .

[26]  M. Monge,et al.  Crystal growth of superconducting LiTi2O4 , 1994 .

[27]  J. Akimoto,et al.  Preparation of LiTi2O4 single crystals with the spinel structure , 1992 .

[28]  M. Stanley Whittingham,et al.  Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1978 .

[29]  A. Yamada,et al.  Electric states of spinel LixMn2O4 as a cathode of the rechargeable battery , 1996 .

[30]  Jeff Dahn,et al.  Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4 , 1989 .

[31]  J. Dahn,et al.  Structure Determination of Lixtis2 by Neutron-Diffraction , 1980 .

[32]  Jan N. Reimers,et al.  Can first principles calculations aid in lithium-ion battery design? , 1995 .