Mechanisms involved in the differential bone marrow homing of CD45 subsets in 5T murine models of myeloma

[1]  D. Eizirik,et al.  Monocyte chemoattractant protein-1 (MCP-1), secreted by bone marrow endothelial cells, induces chemoattraction of 5T multiple myeloma cells , 2004, Clinical & Experimental Metastasis.

[2]  L. Devy,et al.  Murine 5T multiple myeloma cells induce angiogenesis in vitro and in vivo , 2002, British Journal of Cancer.

[3]  K. Vanderkerken,et al.  Laminin-1-induced migration of multiple myeloma cells involves the high-affinity 67 kD laminin receptor , 2001, British Journal of Cancer.

[4]  K. Vanderkerken,et al.  A unique pathway in the homing of murine multiple myeloma cells: CD44v10 mediates binding to bone marrow endothelium. , 2001, Cancer research.

[5]  Susan Biggin,et al.  Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin‐3‐gallate , 2001, Cancer.

[6]  P. Croucher,et al.  In vivo homing and differentiation characteristics of mature (CD45-) and immature (CD45+) 5T multiple myeloma cells. , 2001, Experimental hematology.

[7]  K. Vanderkerken,et al.  In vivo induction of insulin-like growth factor-I receptor and CD44v6 confers homing and adhesion to murine multiple myeloma cells. , 2000, Cancer research.

[8]  J. Woodliff,et al.  Expression of urokinase plasminogen activator and the urokinase plasminogen activator receptor in myeloma cells , 2000, British journal of haematology.

[9]  H. Gårdsvoll,et al.  Generation of high-affinity rabbit polyclonal antibodies to the murine urokinase receptor using DNA immunization. , 2000, Journal of immunological methods.

[10]  B. Smedsrød,et al.  Selective initial in vivo homing pattern of 5T2 multiple myeloma cells in the C57BL/KalwRij mouse , 2000, British Journal of Cancer.

[11]  J. Foidart,et al.  Bone marrow microenvironmental-induced upregulation of MMP-9 activity in murine multiple myeloma cells , 2000 .

[12]  K. Vanderkerken,et al.  Monocyte chemoattractant-1 (MCP-1), secreted by bone marrow endothelial cells, induces chemoattraction of multiple myeloma cells. , 2000 .

[13]  K. Vanderkerken,et al.  The 5TMM series: a useful in vivo mouse model of human multiple myeloma. , 2000, The hematology journal : the official journal of the European Haematology Association.

[14]  R. Bataille,et al.  Production of metalloproteinase-7 (matrilysin) by human myeloma cells and its potential involvement in metalloproteinase-2 activation. , 1999, Journal of immunology.

[15]  M. Dhodapkar,et al.  Syndecan-1 (CD 138) in myeloma and lymphoid malignancies: a multifunctional regulator of cell behavior within the tumor microenvironment. , 1999, Leukemia & lymphoma.

[16]  G. Kaushal,et al.  Syndecan‐1 expression suppresses the level of myeloma matrix metalloproteinase‐9 , 1999, British journal of haematology.

[17]  F. Braet,et al.  Insulin-like growth factor-1 acts as a chemoattractant factor for 5T2 multiple myeloma cells. , 1999, Blood.

[18]  D. Ribatti,et al.  Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. , 1999, Blood.

[19]  F. Blasi,et al.  Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes , 1997, The EMBO journal.

[20]  L. Devy,et al.  Emerging roles for proteinases in cancer. , 1997, Invasion & metastasis.

[21]  K. Thielemans,et al.  Organ involvement and phenotypic adhesion profile of 5T2 and 5T33 myeloma cells in the C57BL/KaLwRij mouse. , 1997, British Journal of Cancer.

[22]  L. Picker,et al.  Lymphocyte Homing and Homeostasis , 1996, Science.

[23]  R. Muschel,et al.  Metalloproteinases in tumor progression: the contribution of MMP-9. , 1994, Invasion & metastasis.

[24]  L. Liotta,et al.  Extracellular matrix 6: Role of matrix metalloproteinases in tumor invasion and metastasis , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[25]  S. Poppema,et al.  Transition in CD45 isoform expression during differentiation of normal and abnormal B cells. , 1989, International immunology.

[26]  J. Croese,et al.  Animal model of human disease. Multiple myeloma. , 1988, The American journal of pathology.

[27]  H. Strander Interferon treatment of human neoplasia. , 1986, Advances in cancer research.

[28]  L. Liotta Tumor invasion and metastases--role of the extracellular matrix: Rhoads Memorial Award lecture. , 1986, Cancer research.

[29]  L. Liotta,et al.  Metastatic potential correlates with enzymatic degradation of basement membrane collagen , 1980, Nature.

[30]  J. Radl,et al.  Idiopathic paraproteinemia. II. Transplantation of the paraprotein-producing clone from old to young C57BL/KaLwRij mice. , 1979, Journal of immunology.

[31]  R. Vracko,et al.  Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. , 1974, The American journal of pathology.