Applications of atom-probe tomography to the characterisation of solute behaviours
暂无分享,去创建一个
[1] F Vurpillot,et al. Modeling Image Distortions in 3DAP , 2004, Microscopy and Microanalysis.
[2] Baptiste Gault,et al. Estimation of the Reconstruction Parameters for Atom Probe Tomography , 2008, Microscopy and Microanalysis.
[3] G. Schoeck. Friccion interna debido a la interaction entre dislocaciones y atomos solutos , 1963 .
[4] Simon P. Ringer,et al. Origins of hardening in aged AlGuMg(Ag) alloys , 1997 .
[5] Emmanuelle A. Marquis,et al. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys , 2001 .
[6] H. Andren,et al. Atom‐probe field‐ion microscopy , 2007 .
[7] David B. Williams,et al. Quantitative characterization of nanoprecipitates in irradiated low-alloy steels: advances in the application of FEG-STEM quantitative microanalysis to real materials , 2006 .
[8] D. Seidman,et al. Atomic-scale structure and chemistry of ceramic/metal interfaces—I. Atomic structure of {222} MgO/Cu (Ag) interfaces , 1999 .
[9] E. Müller,et al. Resolution of the Atomic Structure of a Metal Surface by the Field Ion Microscope , 1956 .
[10] M. Thuvander,et al. APFIM Studies of Grain and Phase Boundaries: A Review , 2000 .
[11] M. G. Hetherington,et al. Three-dimensional characterization and modelling of spinodally decomposed iron-chromium alloys , 1992 .
[12] D. Seidman,et al. Compositional pathways and capillary effects during isothermal precipitation in a nondilute Ni-Al-Cr alloy , 2007 .
[13] J. D. Olson,et al. First Data from a Commercial Local Electrode Atom Probe (LEAP) , 2004, Microscopy and Microanalysis.
[14] Baptiste Gault,et al. Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. , 2009, Ultramicroscopy.
[15] V. Radmilović,et al. Monodisperse Al3(LiScZr) core/shell precipitates in Al alloys , 2008 .
[16] A. Cerezo,et al. Statistical analysis of atom probe data: detecting the early stages of solute clustering and/or co-segregation. , 2009, Ultramicroscopy.
[17] P. Flaitz,et al. Imaging of Arsenic Cottrell Atmospheres Around Silicon Defects by Three-Dimensional Atom Probe Tomography , 2007, Science.
[18] S. Ringer,et al. Origin of the initial rapid age hardening in an Al-1.7 at.% Mg-1.1 at.% Cu alloy , 1999 .
[19] Jason Schneir,et al. Spatial Distribution Maps for Atom Probe Tomography , 2007, Microscopy and Microanalysis.
[20] F Vurpillot,et al. Application of Fourier transform and autocorrelation to cluster identification in the three‐dimensional atom probe , 2004, Journal of microscopy.
[21] Michael K Miller,et al. Atom Probe Field Ion Microscopy , 1996 .
[22] J. Andersson,et al. Thermodynamic properties of the CrFe system , 1987 .
[23] M. K. Miller,et al. Atom probe tomography characterization of solute segregation to dislocations and interfaces , 2006 .
[24] A. Guinier. Structure of Age-Hardened Aluminium-Copper Alloys , 1938, Nature.
[25] A. Cerezo,et al. A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. , 2003, Ultramicroscopy.
[26] D. Seidman,et al. Evolution of nanoscale precipitates in Al microalloyed with Sc and Er , 2009 .
[27] K. Marthinsen,et al. Precipitation kinetic of Al3(Sc,Zr) dispersoids in aluminium , 2009 .
[28] V. Phillips,et al. Lattice resolution measurement of strain fields at Guinier-Preston zones in Al-3.0% Cu , 1973 .
[29] G. Smith,et al. Three-dimensional atomic-scale mapping of a cottrell atmosphere around a dislocation in iron , 2000 .
[30] J. Walls,et al. The projection geometry of the field-ion image , 1978 .
[31] V. Ozoliņš,et al. Mg segregation at Al/Al3Sc heterophase interfaces on an atomic scale: experiments and computations. , 2003, Physical review letters.
[32] David N. Seidman,et al. Application software for data analysis for three-dimensional atom probe microscopy , 2002 .
[33] C. Abromeit,et al. Correlation and Contingency Analysis of Atom Probe Data: Diffusion-controlled Dissolution of Precipitates , 1994 .
[34] D. Williams,et al. Quantification of boundary segregation in the analytical electron microscope , 2000, Journal of microscopy.
[35] M. Fortes. General properties of the field-ion image projection , 1971 .
[36] Reiner Kirchheim,et al. Investigation of the early stages of decomposition of Cu–0.7at.% Fe with the tomographic atom probe , 2003 .
[37] D. Seidman,et al. Best-fit ellipsoids of atom-probe tomographic data to study coalescence of γ′ (L12) precipitates in Ni–Al–Cr , 2007, cond-mat/0703452.
[38] Mitsuhiro Murayama,et al. PRE-PRECIPITATE CLUSTERS AND PRECIPITATION PROCESSES IN Al-Mg-Si ALLOYS , 1999 .
[39] Michael K Miller,et al. Atom Probe Tomography: Analysis at the Atomic Level , 2012 .
[40] Michael K. Miller,et al. Atom probe tomography characterization of solute segregation to dislocations , 2006, Microscopy research and technique.
[41] J. Lendvai,et al. The mechanism of clustering in supersaturated solid solutions of A1-Mg2Si alloys , 1972 .
[42] John F. Knott,et al. Views of TAGSI on the principles underlying the assessment of the mechanical properties of irradiated ferritic steel Reactor Pressure Vessels , 1999 .
[43] K. Hono,et al. Coincidence Doppler broadening and 3DAP study of the pre-precipitation stage of an Al–Li–Cu–Mg–Ag alloy , 2004 .
[44] D. Seidman,et al. Temporal Evolution of the Nanostructure and Phase Compositions in a Model Ni-Al-Cr Alloy , 2006 .
[45] D. Larson,et al. Improvement of multilayer analyses with a three‐dimensional atom probe , 2004 .
[46] M. Hellsing,et al. Detection efficiency in atom-probe time-of-flight mass spectrometry , 1986 .
[47] Tien T. Tsong,et al. Field ion image formation , 1978 .
[48] E A Kenik,et al. Atom Probe Tomography: A Technique for Nanoscale Characterization , 2004, Microscopy and Microanalysis.
[49] Michael K Miller,et al. Invited review article: Atom probe tomography. , 2007, The Review of scientific instruments.
[50] S. Ringer,et al. Contingency table techniques for three dimensional atom probe tomography , 2007, Microscopy research and technique.
[51] P. J. Clark,et al. GENERALIZATION OF A NEAREST NEIGHBOR MEASURE OF DISPERSION FOR USE IN K DIMENSIONS , 1979 .
[52] Olof C Hellman,et al. Efficient sampling for three-dimensional atom probe microscopy data. , 2003, Ultramicroscopy.
[53] E. Boyes,et al. Investigations of field evaporation with a field-desorption microscope , 1976 .
[54] D. J. Rose. On the Magnification and Resolution of the Field Emission Electron Microscope , 1956 .
[55] G. A. Edwards,et al. The precipitation sequence in Al–Mg–Si alloys , 1998 .
[56] Zhi-guo Liu,et al. Investigation of the Site Occupation of Atoms in Pure and Doped TiA1/Ti3Al Intermetallic , 2006, 2006 19th International Vacuum Nanoelectronics Conference.
[57] Michael P Moody,et al. New Techniques for the Analysis of Fine-Scaled Clustering Phenomena within Atom Probe Tomography (APT) Data , 2007, Microscopy and Microanalysis.
[58] A. Moore. The simulation of FIM desorption patterns , 1981 .
[59] G. Sha,et al. Field ion microscopy and 3-D atom probe analysis of Al3Zr particles in 7050 Al alloy. , 2005, Ultramicroscopy.
[60] D. Seidman,et al. Comparison of Compositional and Morphological Atom-Probe Tomography Analyses for a Multicomponent Fe-Cu Steel , 2007, Microscopy and Microanalysis.
[61] Alfred Cerezo,et al. A topological approach to materials characterisation , 1991 .
[62] E. Müller,et al. Multilayer field evaporation patterns , 1977 .
[63] Joanne L. Murray,et al. Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I – Chemical compositions of Al3(Sc1−xZrx) precipitates , 2005 .
[64] Lorenzo Malerba,et al. On the α–α′ miscibility gap of Fe–Cr alloys , 2008 .
[65] K. Marthinsen,et al. The formation of Al3(ScxZryHf1−x−y)-dispersoids in aluminium alloys , 2006 .
[66] E. Boyes,et al. Field-desorption microscopy and the atom probe , 1975, Nature.
[67] Lawrence H. Bennett,et al. Binary alloy phase diagrams , 1986 .
[68] A. Bostel,et al. Trajectory overlaps and local magnification in three-dimensional atom probe , 2000 .
[69] C. English,et al. Microstructural evolution in reactor pressure vessel steels , 1993 .
[70] D. Blavette,et al. Implementation of an optical TAP: preliminary results , 1998 .
[71] D. Blavette,et al. 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy , 2006 .
[72] M. G. Hetherington,et al. Measurement of the amplitude of a spinodal , 1990 .
[73] Alfred Cerezo,et al. Performance of an energy-compensated three-dimensional atom probe , 1998 .
[74] E. Marquis,et al. Chromatic Aberrations in the Field Evaporation Behavior of Small Precipitates , 2008, Microscopy and Microanalysis.
[75] K. Stiller,et al. Early stages of phase separation using three‐dimensional atom probe and atomistic modelling , 2007 .
[76] A. Cerezo,et al. Some aspects of image projection in the field-ion microscope , 1999 .
[77] William E. Lorensen,et al. Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.
[78] D. Seidman,et al. Creep- and coarsening properties of Al–0.06 at.% Sc–0.06 at.% Ti at 300–450 °C , 2008 .
[79] D. Seidman,et al. Coreshell nanoscale precipitates in Al0.06 at.% Sc microalloyed with Tb, Ho, Tm or Lu , 2010 .
[80] Michael K Miller,et al. Embrittlement of RPV steels: An atom probe tomography perspective , 2007 .
[81] D. Blavette,et al. An improved reconstruction procedure for the correction of local magnification effects in three‐dimensional atom‐probe , 2007, 0907.5067.
[82] K. Marthinsen,et al. Three dimensional atom probe investigation on the formation of Al3(Sc, Zr)-dispersoids in aluminium alloys , 2004 .
[83] K. Hono,et al. Role of Ag and Mg on precipitation of T1 phase in an Al-Cu-Li-Mg-Ag alloy , 2001 .
[84] E. Müller. The atom-probe field ion microscope , 1970, Die Naturwissenschaften.
[85] M. K. Miller,et al. The development of atom probe field-ion microscopy , 2000 .
[86] Geoffrey W. Barton,et al. Influence of field evaporation on Radial Distribution Functions in Atom Probe Tomography , 2009 .
[87] F Vurpillot,et al. A new step towards the lattice reconstruction in 3DAP. , 2003, Ultramicroscopy.
[88] E. Müller,et al. Calibration of the Atom Probe FIM , 1969 .
[89] F Vurpillot,et al. Structural analyses in three‐dimensional atom probe: a Fourier transform approach , 2001, Journal of microscopy.
[90] D. Seidman,et al. Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al-0.08 at. %Sc alloy , 2006 .
[91] D. Brandon. On field evaporation , 1966 .
[92] J. Walmsley,et al. Comparative study of the β″‐phase in a 6xxx Al alloy by 3DAP and HRTEM , 2007 .
[93] M. Finnis,et al. Atom probe tomography analysis of the distribution of rhenium in nickel alloys , 2010 .
[94] Baptiste Gault,et al. Correlated field evaporation as seen by atom probe tomography , 2007 .
[95] K. Hono,et al. ROLE OF VACANCY-SOLUTE COMPLEX IN THE INITIAL RAPID AGE HARDENING IN AN Al-Cu-Mg ALLOY , 2001 .
[96] Alfred Cerezo,et al. Aspects of the observation of clusters in the 3‐dimensional atom probe , 2007 .
[97] I. Rossi,et al. Fonctions d'autocorrélation du moment dipolaire de quelques molécules polyatomiques à l'état gazeux , 1973 .
[98] K. Hono,et al. Evolution of Ω phase in an Al-Cu-Mg Ag alloy a three-dimensional atom probe study , 1998 .
[99] Michael K Miller,et al. Local magnification effects in the atom probe , 1990 .
[100] D. Seidman,et al. Effects of Ti additions on the nanostructure and creep properties of precipitation-strengthened Al-Sc alloys , 2005 .
[101] D. Lloyd,et al. A study on the early-stage decomposition in the Al–Mg–Si–Cu alloy AA6111 by electrical resistivity and three-dimensional atom probe , 2007 .
[102] S. M. Allen,et al. A calorimetric study of precipitation in commercial aluminium alloy 6061 , 1991 .