Applications of atom-probe tomography to the characterisation of solute behaviours

In many materials, mechanistic understanding of material microstructure/property relationships requires knowledge of alloy structures at the atomic scale. This remains one of the main challenges of materials science. Historically, because of insufficient spatial resolution of available microstructural techniques, theories relating the role of alloying elements to materials properties were inferred from phenomenological studies. More recently, with the advent of techniques such as atom-probe tomography the spatial resolution limits have been dramatically improved. For instance, since the speculation by Cottrell and Bilby in 1949, it was generally believed that solute segregation at dislocations leads to strain hardening, but the direct proof came only recently when Blavette et al. (Nature, 1999) directly imaged a solute atmosphere at an edge dislocation, using atom-probe tomography. The recent progress in atom-probe tomography (both in dataset size and materials that can be analysed) enables atomic-scale studies of the structures of alloys and, more specifically, the analysis of solute behaviour which is a crucial issue in all areas of materials science. Clustering, ordering, site occupancy and solute/defect interactions are topics that are relevant to all classes of materials and directly affect the mechanical, electrical, magnetic, transport, etc., properties of materials. The real space information from atom-probe tomography provides a direct comparison with atomic simulations. Furthermore experimental data from the early stages of phase transformation can now be used to help validate the energetics used in atomistic modelling. This review will highlight: (1) the current limits of spatial and chemical resolution of atom-probe tomography and the resulting limits of data interpretation, (2) the data analysis tools that have been developed so far and the possible future paths for development and (3) examples where atom-probe tomography has provided mechanistic insight on the behaviour of solutes, in particular clustering, ordering and interactions with defects, and their effect on material properties.

[1]  F Vurpillot,et al.  Modeling Image Distortions in 3DAP , 2004, Microscopy and Microanalysis.

[2]  Baptiste Gault,et al.  Estimation of the Reconstruction Parameters for Atom Probe Tomography , 2008, Microscopy and Microanalysis.

[3]  G. Schoeck Friccion interna debido a la interaction entre dislocaciones y atomos solutos , 1963 .

[4]  Simon P. Ringer,et al.  Origins of hardening in aged AlGuMg(Ag) alloys , 1997 .

[5]  Emmanuelle A. Marquis,et al.  Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys , 2001 .

[6]  H. Andren,et al.  Atom‐probe field‐ion microscopy , 2007 .

[7]  David B. Williams,et al.  Quantitative characterization of nanoprecipitates in irradiated low-alloy steels: advances in the application of FEG-STEM quantitative microanalysis to real materials , 2006 .

[8]  D. Seidman,et al.  Atomic-scale structure and chemistry of ceramic/metal interfaces—I. Atomic structure of {222} MgO/Cu (Ag) interfaces , 1999 .

[9]  E. Müller,et al.  Resolution of the Atomic Structure of a Metal Surface by the Field Ion Microscope , 1956 .

[10]  M. Thuvander,et al.  APFIM Studies of Grain and Phase Boundaries: A Review , 2000 .

[11]  M. G. Hetherington,et al.  Three-dimensional characterization and modelling of spinodally decomposed iron-chromium alloys , 1992 .

[12]  D. Seidman,et al.  Compositional pathways and capillary effects during isothermal precipitation in a nondilute Ni-Al-Cr alloy , 2007 .

[13]  J. D. Olson,et al.  First Data from a Commercial Local Electrode Atom Probe (LEAP) , 2004, Microscopy and Microanalysis.

[14]  Baptiste Gault,et al.  Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. , 2009, Ultramicroscopy.

[15]  V. Radmilović,et al.  Monodisperse Al3(LiScZr) core/shell precipitates in Al alloys , 2008 .

[16]  A. Cerezo,et al.  Statistical analysis of atom probe data: detecting the early stages of solute clustering and/or co-segregation. , 2009, Ultramicroscopy.

[17]  P. Flaitz,et al.  Imaging of Arsenic Cottrell Atmospheres Around Silicon Defects by Three-Dimensional Atom Probe Tomography , 2007, Science.

[18]  S. Ringer,et al.  Origin of the initial rapid age hardening in an Al-1.7 at.% Mg-1.1 at.% Cu alloy , 1999 .

[19]  Jason Schneir,et al.  Spatial Distribution Maps for Atom Probe Tomography , 2007, Microscopy and Microanalysis.

[20]  F Vurpillot,et al.  Application of Fourier transform and autocorrelation to cluster identification in the three‐dimensional atom probe , 2004, Journal of microscopy.

[21]  Michael K Miller,et al.  Atom Probe Field Ion Microscopy , 1996 .

[22]  J. Andersson,et al.  Thermodynamic properties of the CrFe system , 1987 .

[23]  M. K. Miller,et al.  Atom probe tomography characterization of solute segregation to dislocations and interfaces , 2006 .

[24]  A. Guinier Structure of Age-Hardened Aluminium-Copper Alloys , 1938, Nature.

[25]  A. Cerezo,et al.  A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. , 2003, Ultramicroscopy.

[26]  D. Seidman,et al.  Evolution of nanoscale precipitates in Al microalloyed with Sc and Er , 2009 .

[27]  K. Marthinsen,et al.  Precipitation kinetic of Al3(Sc,Zr) dispersoids in aluminium , 2009 .

[28]  V. Phillips,et al.  Lattice resolution measurement of strain fields at Guinier-Preston zones in Al-3.0% Cu , 1973 .

[29]  G. Smith,et al.  Three-dimensional atomic-scale mapping of a cottrell atmosphere around a dislocation in iron , 2000 .

[30]  J. Walls,et al.  The projection geometry of the field-ion image , 1978 .

[31]  V. Ozoliņš,et al.  Mg segregation at Al/Al3Sc heterophase interfaces on an atomic scale: experiments and computations. , 2003, Physical review letters.

[32]  David N. Seidman,et al.  Application software for data analysis for three-dimensional atom probe microscopy , 2002 .

[33]  C. Abromeit,et al.  Correlation and Contingency Analysis of Atom Probe Data: Diffusion-controlled Dissolution of Precipitates , 1994 .

[34]  D. Williams,et al.  Quantification of boundary segregation in the analytical electron microscope , 2000, Journal of microscopy.

[35]  M. Fortes General properties of the field-ion image projection , 1971 .

[36]  Reiner Kirchheim,et al.  Investigation of the early stages of decomposition of Cu–0.7at.% Fe with the tomographic atom probe , 2003 .

[37]  D. Seidman,et al.  Best-fit ellipsoids of atom-probe tomographic data to study coalescence of γ′ (L12) precipitates in Ni–Al–Cr , 2007, cond-mat/0703452.

[38]  Mitsuhiro Murayama,et al.  PRE-PRECIPITATE CLUSTERS AND PRECIPITATION PROCESSES IN Al-Mg-Si ALLOYS , 1999 .

[39]  Michael K Miller,et al.  Atom Probe Tomography: Analysis at the Atomic Level , 2012 .

[40]  Michael K. Miller,et al.  Atom probe tomography characterization of solute segregation to dislocations , 2006, Microscopy research and technique.

[41]  J. Lendvai,et al.  The mechanism of clustering in supersaturated solid solutions of A1-Mg2Si alloys , 1972 .

[42]  John F. Knott,et al.  Views of TAGSI on the principles underlying the assessment of the mechanical properties of irradiated ferritic steel Reactor Pressure Vessels , 1999 .

[43]  K. Hono,et al.  Coincidence Doppler broadening and 3DAP study of the pre-precipitation stage of an Al–Li–Cu–Mg–Ag alloy , 2004 .

[44]  D. Seidman,et al.  Temporal Evolution of the Nanostructure and Phase Compositions in a Model Ni-Al-Cr Alloy , 2006 .

[45]  D. Larson,et al.  Improvement of multilayer analyses with a three‐dimensional atom probe , 2004 .

[46]  M. Hellsing,et al.  Detection efficiency in atom-probe time-of-flight mass spectrometry , 1986 .

[47]  Tien T. Tsong,et al.  Field ion image formation , 1978 .

[48]  E A Kenik,et al.  Atom Probe Tomography: A Technique for Nanoscale Characterization , 2004, Microscopy and Microanalysis.

[49]  Michael K Miller,et al.  Invited review article: Atom probe tomography. , 2007, The Review of scientific instruments.

[50]  S. Ringer,et al.  Contingency table techniques for three dimensional atom probe tomography , 2007, Microscopy research and technique.

[51]  P. J. Clark,et al.  GENERALIZATION OF A NEAREST NEIGHBOR MEASURE OF DISPERSION FOR USE IN K DIMENSIONS , 1979 .

[52]  Olof C Hellman,et al.  Efficient sampling for three-dimensional atom probe microscopy data. , 2003, Ultramicroscopy.

[53]  E. Boyes,et al.  Investigations of field evaporation with a field-desorption microscope , 1976 .

[54]  D. J. Rose On the Magnification and Resolution of the Field Emission Electron Microscope , 1956 .

[55]  G. A. Edwards,et al.  The precipitation sequence in Al–Mg–Si alloys , 1998 .

[56]  Zhi-guo Liu,et al.  Investigation of the Site Occupation of Atoms in Pure and Doped TiA1/Ti3Al Intermetallic , 2006, 2006 19th International Vacuum Nanoelectronics Conference.

[57]  Michael P Moody,et al.  New Techniques for the Analysis of Fine-Scaled Clustering Phenomena within Atom Probe Tomography (APT) Data , 2007, Microscopy and Microanalysis.

[58]  A. Moore The simulation of FIM desorption patterns , 1981 .

[59]  G. Sha,et al.  Field ion microscopy and 3-D atom probe analysis of Al3Zr particles in 7050 Al alloy. , 2005, Ultramicroscopy.

[60]  D. Seidman,et al.  Comparison of Compositional and Morphological Atom-Probe Tomography Analyses for a Multicomponent Fe-Cu Steel , 2007, Microscopy and Microanalysis.

[61]  Alfred Cerezo,et al.  A topological approach to materials characterisation , 1991 .

[62]  E. Müller,et al.  Multilayer field evaporation patterns , 1977 .

[63]  Joanne L. Murray,et al.  Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I – Chemical compositions of Al3(Sc1−xZrx) precipitates , 2005 .

[64]  Lorenzo Malerba,et al.  On the α–α′ miscibility gap of Fe–Cr alloys , 2008 .

[65]  K. Marthinsen,et al.  The formation of Al3(ScxZryHf1−x−y)-dispersoids in aluminium alloys , 2006 .

[66]  E. Boyes,et al.  Field-desorption microscopy and the atom probe , 1975, Nature.

[67]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[68]  A. Bostel,et al.  Trajectory overlaps and local magnification in three-dimensional atom probe , 2000 .

[69]  C. English,et al.  Microstructural evolution in reactor pressure vessel steels , 1993 .

[70]  D. Blavette,et al.  Implementation of an optical TAP: preliminary results , 1998 .

[71]  D. Blavette,et al.  3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy , 2006 .

[72]  M. G. Hetherington,et al.  Measurement of the amplitude of a spinodal , 1990 .

[73]  Alfred Cerezo,et al.  Performance of an energy-compensated three-dimensional atom probe , 1998 .

[74]  E. Marquis,et al.  Chromatic Aberrations in the Field Evaporation Behavior of Small Precipitates , 2008, Microscopy and Microanalysis.

[75]  K. Stiller,et al.  Early stages of phase separation using three‐dimensional atom probe and atomistic modelling , 2007 .

[76]  A. Cerezo,et al.  Some aspects of image projection in the field-ion microscope , 1999 .

[77]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[78]  D. Seidman,et al.  Creep- and coarsening properties of Al–0.06 at.% Sc–0.06 at.% Ti at 300–450 °C , 2008 .

[79]  D. Seidman,et al.  Coreshell nanoscale precipitates in Al0.06 at.% Sc microalloyed with Tb, Ho, Tm or Lu , 2010 .

[80]  Michael K Miller,et al.  Embrittlement of RPV steels: An atom probe tomography perspective , 2007 .

[81]  D. Blavette,et al.  An improved reconstruction procedure for the correction of local magnification effects in three‐dimensional atom‐probe , 2007, 0907.5067.

[82]  K. Marthinsen,et al.  Three dimensional atom probe investigation on the formation of Al3(Sc, Zr)-dispersoids in aluminium alloys , 2004 .

[83]  K. Hono,et al.  Role of Ag and Mg on precipitation of T1 phase in an Al-Cu-Li-Mg-Ag alloy , 2001 .

[84]  E. Müller The atom-probe field ion microscope , 1970, Die Naturwissenschaften.

[85]  M. K. Miller,et al.  The development of atom probe field-ion microscopy , 2000 .

[86]  Geoffrey W. Barton,et al.  Influence of field evaporation on Radial Distribution Functions in Atom Probe Tomography , 2009 .

[87]  F Vurpillot,et al.  A new step towards the lattice reconstruction in 3DAP. , 2003, Ultramicroscopy.

[88]  E. Müller,et al.  Calibration of the Atom Probe FIM , 1969 .

[89]  F Vurpillot,et al.  Structural analyses in three‐dimensional atom probe: a Fourier transform approach , 2001, Journal of microscopy.

[90]  D. Seidman,et al.  Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al-0.08 at. %Sc alloy , 2006 .

[91]  D. Brandon On field evaporation , 1966 .

[92]  J. Walmsley,et al.  Comparative study of the β″‐phase in a 6xxx Al alloy by 3DAP and HRTEM , 2007 .

[93]  M. Finnis,et al.  Atom probe tomography analysis of the distribution of rhenium in nickel alloys , 2010 .

[94]  Baptiste Gault,et al.  Correlated field evaporation as seen by atom probe tomography , 2007 .

[95]  K. Hono,et al.  ROLE OF VACANCY-SOLUTE COMPLEX IN THE INITIAL RAPID AGE HARDENING IN AN Al-Cu-Mg ALLOY , 2001 .

[96]  Alfred Cerezo,et al.  Aspects of the observation of clusters in the 3‐dimensional atom probe , 2007 .

[97]  I. Rossi,et al.  Fonctions d'autocorrélation du moment dipolaire de quelques molécules polyatomiques à l'état gazeux , 1973 .

[98]  K. Hono,et al.  Evolution of Ω phase in an Al-Cu-Mg Ag alloy a three-dimensional atom probe study , 1998 .

[99]  Michael K Miller,et al.  Local magnification effects in the atom probe , 1990 .

[100]  D. Seidman,et al.  Effects of Ti additions on the nanostructure and creep properties of precipitation-strengthened Al-Sc alloys , 2005 .

[101]  D. Lloyd,et al.  A study on the early-stage decomposition in the Al–Mg–Si–Cu alloy AA6111 by electrical resistivity and three-dimensional atom probe , 2007 .

[102]  S. M. Allen,et al.  A calorimetric study of precipitation in commercial aluminium alloy 6061 , 1991 .