Unsupervised Polarimetric SAR Image Segmentation and Classification Using Region Growing With Edge Penalty

A region-based unsupervised segmentation and classification algorithm for polarimetric synthetic aperture radar (SAR) imagery that incorporates region growing and a Markov random field edge strength model is designed and implemented. This algorithm is an extension of the successful Iterative Region Growing with Semantics (IRGS) segmentation and classification algorithm, which was designed for amplitude only SAR imagery, to polarimetric data. Polarimetric IRGS (PolarIRGS) extends IRGS by incorporating a polarimetric feature model based on the Wishart distribution and modifying key steps such as initialization, edge strength computation, and the region growing criterion. Like IRGS, PolarIRGS oversegments an image into regions and employs iterative region growing to reduce the size of the solution search space. The incorporation of an edge penalty in the spatial context model improves segmentation performance by preserving segment boundaries that traditional spatial models will smooth over. Evaluation of PolarIRGS with Flevoland fully polarimetric data shows that it improves upon two other recently published techniques in terms of classification accuracy.

[1]  Rama Chellappa,et al.  Segmentation of polarimetric synthetic aperture radar data , 1992, IEEE Trans. Image Process..

[2]  N. W. Park,et al.  Integration of multitemporal/polarization C‐band SAR data sets for land‐cover classification , 2008 .

[3]  Ronald L. Rardin,et al.  Optimization in operations research , 1997 .

[4]  Robert Jenssen,et al.  Spectral Clustering of Polarimetric SAR Data With Wishart-Derived Distance Measures , 2007 .

[5]  谢鸿全 An Unsupervised Segmentation With an Adaptive Number of Clusters Using the SPAN/H/a/A Space and the Complex Wishart Clustering for Fully Polarimetric SAR Data Analysis , 2007 .

[6]  Stan Z. Li,et al.  Markov Random Field Modeling in Image Analysis , 2001, Computer Science Workbench.

[7]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[8]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[9]  Rafael C. González,et al.  Digital image processing, 3rd Edition , 2008 .

[10]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[11]  Daniel N. Held,et al.  Comparison of Several Techniques to Obtain Multiple-Look SAR Imagery , 1983, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Hsien-Che Lee,et al.  Detecting boundaries in a vector field , 1991, IEEE Trans. Signal Process..

[14]  W. Yang,et al.  Improved Classification of SAR Sea Ice Imagery Based on Segmentation , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[15]  P. Yu Segmentation of RADARSAT-2 Dual-Polarization Sea Ice Imagery , 2009 .

[16]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Laurent Ferro-Famil,et al.  Unsupervised terrain classification preserving polarimetric scattering characteristics , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[18]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[19]  Josiane Zerubia,et al.  Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood , 1999, IEEE Trans. Image Process..

[20]  B. Scheuchl,et al.  Potential of RADARSAT-2 data for operational sea ice monitoring , 2004 .

[21]  Eric Pottier,et al.  Quantitative comparison of classification capability: fully polarimetric versus dual and single-polarization SAR , 2001, IEEE Trans. Geosci. Remote. Sens..

[22]  Seiho Uratsuka,et al.  Observation of sea-ice thickness in the sea of Okhotsk by using dual-frequency and fully polarimetric airborne SAR (pi-SAR) data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[24]  B. Brisco,et al.  Agricultural applications with radar , 1998 .

[25]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[26]  Philippe Maillard,et al.  Mapping a wetland complex in the Brazilian savannah using an Ikonos image: assessing the potential of a new region-based classifier , 2010 .

[27]  Chongzhao Han,et al.  PolSAR Data Segmentation by Combining Tensor Space Cluster Analysis and Markovian Framework , 2010, IEEE Geoscience and Remote Sensing Letters.

[28]  Ravi Bansal,et al.  Segmentation of Dynamic N-D Data Sets via Graph Cuts Using Markov Models , 2001, MICCAI.

[29]  Rabab Kreidieh Ward,et al.  Segmentation and Classification of Polarimetric SAR Data Using Spectral Graph Partitioning , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[30]  D. Flett,et al.  THE POTENTIAL OF CROSS-POLARIZATION INFORMATION FOR OPERATIONAL SEA ICE MONITORING , 2004 .

[31]  E. LeDrew,et al.  Remote sensing of aquatic coastal ecosystem processes , 2006 .

[32]  Wen Hong,et al.  An Unsupervised Segmentation With an Adaptive Number of Clusters Using the $SPAN/H/\alpha/A$ Space and the Complex Wishart Clustering for Fully Polarimetric SAR Data Analysis , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[33]  J. S. Lee,et al.  Unsupervised segmentation of dual-polarization SAR images based on amplitude and texture characteristics , 2002 .

[34]  David A. Clausi,et al.  IRGS: Image Segmentation Using Edge Penalties and Region Growing , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  David A. Clausi,et al.  SAR Sea-Ice Image Analysis Based on Iterative Region Growing Using Semantics , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[36]  David A Clausi,et al.  MAGIC: MAp-Guided Ice Classification System , 2010 .

[37]  Yi Su,et al.  Region-Based Classification of Polarimetric SAR Images Using Wishart MRF , 2008, IEEE Geoscience and Remote Sensing Letters.

[38]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[39]  Milan Sonka,et al.  Image processing analysis and machine vision [2nd ed.] , 1999 .

[40]  Knut Conradsen,et al.  A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[41]  C. Oliver,et al.  Optimum edge detection in SAR , 1996 .

[42]  Knut Conradsen,et al.  CFAR edge detector for polarimetric SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..

[43]  David A. Clausi,et al.  Multivariate Image Segmentation Using Semantic Region Growing With Adaptive Edge Penalty , 2010, IEEE Transactions on Image Processing.

[44]  Muni S. Srivastava On the Complex Wishart Distribution , 1965 .

[45]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[46]  Ron Kwok,et al.  Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution , 1994 .

[47]  Rafael C. Gonzales,et al.  Digital Image Processing -3/E. , 2012 .