Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans

[1]  C. Klauber A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution , 2008 .

[2]  C. Ayora,et al.  Kinetics of chalcopyrite dissolution at pH 3 , 2007 .

[3]  O. Tuovinen,et al.  Synthesis and properties of ammoniojarosites prepared with iron-oxidizing acidophilic microorganisms at 22–65 °C , 2007 .

[4]  Helen R. Watling,et al.  The bioleaching of sulphide minerals with emphasis on copper sulphides — A review , 2006 .

[5]  M. E. Clark,et al.  Biotechnology in minerals processing: Technological breakthroughs creating value , 2006 .

[6]  J. Petersen,et al.  Competitive bioleaching of pyrite and chalcopyrite , 2006 .

[7]  K. Sasaki,et al.  FE-SEM Study of Microbially Formed Jarosites by Acidithiobacillus ferrooxidans , 2006 .

[8]  M. Nicol,et al.  A rotating ring–disk study of the initial stages of the anodic dissolution of chalcopyrite in acidic solutions , 2006 .

[9]  R. Frost,et al.  A Raman spectroscopic study of selected natural jarosites. , 2006, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[10]  S. Harmer,et al.  Sulfur species at chalcopyrite (CuFeS2) fracture surfaces , 2004 .

[11]  C. Klauber,et al.  An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite , 2003 .

[12]  C. Klauber Fracture‐induced reconstruction of a chalcopyrite (CuFeS2) surface , 2003 .

[13]  M. Nicol,et al.  The mechanism of the dissolution and passivation of chalcopyrite: An electrochemical study , 2003 .

[14]  K. Sasaki,et al.  MORPHOLOGY OF JAROSITE-GROUP COMPOUNDS PRECIPITATED FROM BIOLOGICALLY AND CHEMICALLY OXIDIZED Fe IONS , 2000 .

[15]  C. Mustin,et al.  Bioleaching of pyrite by Thiobacillus ferrooxidans: fixed grains electrode to study superficial oxidized compounds , 1999 .

[16]  K. Sasaki,et al.  Distinction of jarosite-group compounds by Raman spectroscopy , 1998 .

[17]  Masami Tsunekawa,et al.  THE ROLE OF SULFUR-OXIDIZING BACTERIA THIOBACILLUS THIOOXIDANS IN PYRITE WEATHERING , 1998 .

[18]  M. Tsunekawa,et al.  A case of ferrous sulfate addition enhancing chalcopyrite leaching , 1997 .

[19]  K. Sasaki Raman study of the microbially mediated dissolution of pyrite by Thiobacillus ferrooxidans , 1997 .

[20]  J. A. King,et al.  Passivation of chalcopyrite during oxidative leaching in sulfate media , 1995 .

[21]  M. Tsunekawa,et al.  Confirmation of a sulfur-rich layer on pyrite after oxidative dissolution by Fe(lIl) ions around pH2 , 1995 .

[22]  G. Kelsall,et al.  Atmospheric and electrochemical oxidation of the surface of chalcopyrite (CuFeS2) , 1995 .

[23]  O. Tuovinen,et al.  Bacterial leaching of complex sulfide ore samples in bench-scale column reactors , 1995 .

[24]  Jun Li,et al.  Characterization of surface layers formed during pyrite oxidation , 1994 .

[25]  T. Mernagh,et al.  A laser Raman microprobe study of some geologically important sulphide minerals , 1993 .

[26]  M. Tsunekawa,et al.  Leaching Behavior and Surface Characterization of Pyrite in Bacterial Leaching with Thiobacillus ferrooxidans. , 1993 .

[27]  W. Richmond,et al.  An electrochemical study of the oxidation of chalcopyrite in acidic solution , 1990 .

[28]  J. Dutrizac,et al.  Synthesis and properties of jarosite-type compounds , 1976 .

[29]  M P SILVERMAN,et al.  STUDIES ON THE CHEMOAUTOTROPHIC IRON BACTERIUM FERROBACILLUS FERROOXIDANS , 1959, Journal of bacteriology.