Single nucleotide polymorphism discovery via genotyping by sequencing to assess population genetic structure and recurrent polyploidization in Andropogon gerardii.

PREMISE OF THE STUDY Autopolyploidy, genome duplication within a single lineage, can result in multiple cytotypes within a species. Geographic distributions of cytotypes may reflect the evolutionary history of autopolyploid formation and subsequent population dynamics including stochastic (drift) and deterministic (differential selection among cytotypes) processes. Here, we used a population genomic approach to investigate whether autopolyploidy occurred once or multiple times in Andropogon gerardii, a widespread, North American grass with two predominant cytotypes. METHODS Genotyping by sequencing was used to identify single nucleotide polymorphisms (SNPs) in individuals collected from across the geographic range of A. gerardii. Two independent approaches to SNP calling were used: the reference-free UNEAK pipeline and a reference-guided approach based on the sequenced Sorghum bicolor genome. SNPs generated using these pipelines were analyzed independently with genetic distance and clustering. KEY RESULTS Analyses of the two SNP data sets showed very similar patterns of population-level clustering of A. gerardii individuals: a cluster of A. gerardii individuals from the southern Plains, a northern Plains cluster, and a western cluster. Groupings of individuals corresponded to geographic localities regardless of cytotype: 6x and 9x individuals from the same geographic area clustered together. CONCLUSIONS SNPs generated using reference-guided and reference-free pipelines in A. gerardii yielded unique subsets of genomic data. Both data sets suggest that the 9x cytotype in A. gerardii likely evolved multiple times from 6x progenitors across the range of the species. Genomic approaches like GBS and diverse bioinformatics pipelines used here facilitate evolutionary analyses of complex systems with multiple ploidy levels.

[1]  C. Mcmillan,et al.  The Role of Ecotypic Variation in the Distribution of the Central Grassland of North America , 1959 .

[2]  G. Stebbins THE ROLE OF POLYPLOID COMPLEXES IN THE EVOLUTION OF NORTH AMERICAN GRASSLANDS , 1975 .

[3]  D. E. Soltis Autopolyploidy in Tolmiea menziesii (Saxifragaceae). , 1984 .

[4]  C. Quarín,et al.  Permanent odd polyploidy in a grass (Andropogon ternatus) , 1987 .

[5]  D. Galbraith,et al.  Polyploid polymorphism in Andropogon gerardii , 1987 .

[6]  K. Keeler Distribution of polyploid variation in big bluestem (Andropogon gerardii, Poaceae) across the tallgrass prairie region. , 1990 .

[7]  K. Keeler LOCAL POLYPLOID VARIATION IN THE NATIVE PRAIRIE GRASS ANDROPOGON GERARDII , 1992 .

[8]  F. Bretagnolle,et al.  Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. , 1995, The New phytologist.

[9]  D. Soltis,et al.  The dynamic nature of polyploid genomes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Hewitt Some genetic consequences of ice ages, and their role in divergence and speciation , 1996 .

[11]  K. Keeler,et al.  Evolutionary implications of meiotic chromosome behavior, reproductive biology, and hybridization in 6x and 9x cytotypes of Andropogon gerardii (Poaceae). , 1997, American journal of botany.

[12]  A. Paterson,et al.  Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. , 1998, Genome research.

[13]  D. Schemske,et al.  PATHWAYS, MECHANISMS, AND RATES OF POLYPLOID FORMATION IN FLOWERING PLANTS , 1998 .

[14]  S. C. Liu,et al.  Detailed alignment of saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. , 1998, Genetics.

[15]  D. J. Gustafson,et al.  Random amplified polymorphic DNA variation among remnant big bluestem (Andropogon gerardii Vitman) populations from Arkansas’ Grand Prairie , 1999, Molecular ecology.

[16]  D. Soltis,et al.  Multiple origins of polyploidy and the geographic structure of Heuchera grossulariifolia , 1999 .

[17]  K. Keeler,et al.  Comparison of common cytotypesof Andropogon gerardii(Andropogoneae, Poaceae). , 1999, American journal of botany.

[18]  D. Soltis,et al.  Polyploidy: recurrent formation and genome evolution. , 1999, Trends in ecology & evolution.

[19]  D. Soltis,et al.  The role of genetic and genomic attributes in the success of polyploids. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Otto,et al.  Polyploid incidence and evolution. , 2000, Annual review of genetics.

[21]  L. Rieseberg,et al.  Transgressive character expression in a hybrid sunflower species. , 2001, American journal of botany.

[22]  T. Sharbel,et al.  Recurrent polyploid origins and chloroplast phylogeography in the Arabis holboellii complex (Brassicaceae) , 2001, Heredity.

[23]  K. Keeler,et al.  Clone Size of Andropogon gerardii Vitman (Big Bluestem) at Konza Prairie, Kansas , 2002 .

[24]  E. Kellogg,et al.  Phylogeny of Andropogoneae Inferred from Phytochrome B, GBSSI, and ndhF , 2002, International Journal of Plant Sciences.

[25]  J. Wendel,et al.  Polyploidy and the Evolutionary History of Cotton , 2003 .

[26]  K. Keeler,et al.  Cytotypes of Andropogon gerardii Vitman (Poaceae): fertility and reproduction of aneuploids , 2003 .

[27]  S. Renvoize,et al.  Genomic relationships among diploid and hexaploid species of Andropogon (Poaceae). , 2004, Genome.

[28]  E. Baack Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus: Ranunculaceae). , 2004, American journal of botany.

[29]  D. Soltis,et al.  Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons , 2004 .

[30]  K. Keeler Impact of Intraspecific Polyploidy in Andropogon gerardii (Poaceae) Populations , 2004 .

[31]  D. J. Gustafson,et al.  Conservation genetics of two co‐dominant grass species in an endangered grassland ecosystem , 2004 .

[32]  G. Hewitt Genetic consequences of climatic oscillations in the Quaternary. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[33]  J. DeLay,et al.  Polyploidy and habitat differentiation in Dactylis glomerata L. from Galicia (Spain) , 1987, Oecologia.

[34]  B. Sobral,et al.  Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharinae , 1994, Theoretical and Applied Genetics.

[35]  V. Grant Cytogenetics of the hybrid Gilia millefoliata × achilleaefolia , 1953, Chromosoma.

[36]  Pamela S Soltis,et al.  Ancient and recent polyploidy in angiosperms. , 2005, The New phytologist.

[37]  D. Kostoff A contribution to the sterility and irregularities in the meiotic processes caused by virus diseases , 2005, Genetica.

[38]  D. Soltis,et al.  Widespread genome duplications throughout the history of flowering plants. , 2006, Genome research.

[39]  J. Suda,et al.  Estimation of Relative Nuclear DNA Content in Dehydrated Plant Tissues by Flow Cytometry , 2006, Current protocols in cytometry.

[40]  Jonathan F. Wendel,et al.  Polyploidy and Crop Improvement , 2006 .

[41]  Hongyu Zhao,et al.  A non-parametric approach to population structure inference using multilocus genotypes , 2006, Human Genomics.

[42]  P. Schönswetter,et al.  Complex distribution patterns of di-, tetra-, and hexaploid cytotypes in the European high mountain plant Senecio carniolicus (Asteraceae). , 2007, American journal of botany.

[43]  Douglas E. Soltis,et al.  Autopolyploidy in angiosperms: Have we grossly underestimated the number of species? , 2007 .

[44]  David Ståhlberg Habitat differentiation, hybridization and gene flow patterns in mixed populations of diploid and autotetraploid Dactylorhiza maculata s.l. (Orchidaceae) , 2009, Evolutionary Ecology.

[45]  F. Gould The grass genus Andropogon in the United States , 2008, Brittonia.

[46]  B. Husband,et al.  RAPID ADAPTIVE DIVERGENCE IN NEW WORLD ACHILLEA, AN AUTOPOLYPLOID COMPLEX OF ECOLOGICAL RACES , 2008, Evolution; international journal of organic evolution.

[47]  J. Belling The origin of chromosomal mutations inUvularia , 1925, Journal of Genetics.

[48]  J. Nason,et al.  Origins, distribution, and local co-occurrence of polyploid cytotypes in Solidago altissima (Asteraceae). , 2008, American journal of botany.

[49]  J. Kendall,et al.  Studies on certainPetunia aberrants , 1931, Journal of Genetics.

[50]  J. Harlan,et al.  On Ö. Winge and a Prayer: The origins of polyploidy , 1975, The Botanical Review.

[51]  Itay Mayrose,et al.  The frequency of polyploid speciation in vascular plants , 2009, Proceedings of the National Academy of Sciences.

[52]  E. Schilling,et al.  Evidence for multiple, autoploid origins of agamospermous populations in Eupatorium sessilifolium (Asteraceae) , 2009, Plant Systematics and Evolution.

[53]  Mihaela M. Martis,et al.  The Sorghum bicolor genome and the diversification of grasses , 2009, Nature.

[54]  Chih Lee,et al.  PCA-based population structure inference with generic clustering algorithms , 2009, BMC Bioinformatics.

[55]  D. L. Price,et al.  Hierarchical classification of switchgrass genotypes using SSR and chloroplast sequences: ecotypes, ploidies, gene pools, and cultivars , 2011, Theoretical and Applied Genetics.

[56]  S. Myles,et al.  Rapid Genomic Characterization of the Genus Vitis , 2010, PloS one.

[57]  Christian Parisod,et al.  Evolutionary consequences of autopolyploidy. , 2010, The New phytologist.

[58]  M. Blaxter,et al.  Genome-wide genetic marker discovery and genotyping using next-generation sequencing , 2011, Nature Reviews Genetics.

[59]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[60]  W. Cowling,et al.  Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures , 2011, BMC Plant Biology.

[61]  Robert J. Elshire,et al.  A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species , 2011, PloS one.

[62]  S. Nuismer,et al.  A Unified Model of Autopolyploid Establishment and Evolution , 2011, The American Naturalist.

[63]  J. Poland,et al.  Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by-Sequencing Approach , 2012, PloS one.

[64]  Sebastian Proost,et al.  Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification. , 2012, Molecular biology and evolution.

[65]  Songnian Hu,et al.  EvolView, an online tool for visualizing, annotating and managing phylogenetic trees , 2012, Nucleic Acids Res..

[66]  Jan Suda,et al.  The more the better? The role of polyploidy in facilitating plant invasions. , 2012, Annals of botany.

[67]  H. Müller-Schärer,et al.  Increased Phenotypic Plasticity to Climate May Have Boosted the Invasion Success of Polyploid Centaurea stoebe , 2012, PloS one.

[68]  P. McIntyre Polyploidy associated with altered and broader ecological niches in the Claytonia perfoliata (Portulacaceae) species complex. , 2012, American journal of botany.

[69]  D. Soltis,et al.  Cytogeography of the Humifusa clade of Opuntia s.s. Mill. 1754 (Cactaceae, Opuntioideae, Opuntieae): correlations with pleistocene refugia and morphological traits in a polyploid complex , 2012, Comparative cytogenetics.

[70]  B. Husband,et al.  ADAPTATION OF DIPLOID AND TETRAPLOID CHAMERION ANGUSTIFOLIUM TO ELEVATION BUT NOT LOCAL ENVIRONMENT , 2013, Evolution; international journal of organic evolution.

[71]  K. Olsen,et al.  A bountiful harvest: genomic insights into crop domestication phenotypes. , 2013, Annual review of plant biology.

[72]  T. White,et al.  Adaptive evolution during an ongoing range expansion: the invasive bank vole (Myodes glareolus) in Ireland , 2013, Molecular ecology.

[73]  C. Thompson,et al.  FHB RESISTANCE QTL MAPPING USING NATIVE SOURCE OF RESISTANCE AND SNP-GBS MARKERS , 2013 .

[74]  Zachariah Gompert,et al.  Population genomics based on low coverage sequencing: how low should we go? , 2013, Molecular ecology.

[75]  Robert J. Elshire,et al.  Switchgrass Genomic Diversity, Ploidy, and Evolution: Novel Insights from a Network-Based SNP Discovery Protocol , 2013, PLoS genetics.

[76]  K. Garrett,et al.  Ecotypes of an ecologically dominant prairie grass (Andropogon gerardii) exhibit genetic divergence across the U.S. Midwest grasslands' environmental gradient , 2014, Molecular ecology.

[77]  G. Luikart,et al.  Recent novel approaches for population genomics data analysis , 2014, Molecular ecology.

[78]  K. Marhold,et al.  Origin and systematic position of Jacobaea vulgaris (Asteraceae) octoploids: genetic and morphological evidence , 2014, Plant Systematics and Evolution.

[79]  M. Arnold,et al.  Determining population structure and hybridization for two iris species , 2014, Ecology and evolution.

[80]  Robert J. Elshire,et al.  TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline , 2014, PloS one.

[81]  Pamela S Soltis,et al.  The polyploidy revolution then…and now: Stebbins revisited. , 2014, American journal of botany.

[82]  B. Mable,et al.  Recent progress and challenges in population genetics of polyploid organisms: an overview of current state‐of‐the‐art molecular and statistical tools , 2014, Molecular ecology.

[83]  Allison J. Miller,et al.  Environmental correlates of cytotype distribution in Andropogon gerardii (Poaceae). , 2015, American journal of botany.