Calculation of impurity diffusivities in α-Fe using first-principles methods
暂无分享,去创建一个
Mark Asta | Vidvuds Ozolins | Peter K. Liaw | Gautam Ghosh | V. Ozoliņš | P. Liaw | Shenyang Huang | M. Asta | G. Ghosh | Shenyan Huang | Daniel L. Worthington | D. L. Worthington
[1] Stefano de Gironcoli,et al. Vacancy self-diffusion parameters in tungsten: Finite electron-temperature LDA calculations , 1998 .
[2] Gerhard Sauthoff,et al. The strengthening effect of (Ni, Fe)Al precipitates on the mechanical properties at high temperatures of ferritic Fe–Al–Ni–Cr alloys , 2005 .
[3] K.H.J. Buschow,et al. Encyclopedia of Materials: Science and Technology , 2004 .
[4] Igor A. Abrikosov,et al. Configurational thermodynamics of alloys from first principles: effective cluster interactions , 2008 .
[5] Zi-kui Liu. First-Principles Calculations and CALPHAD Modeling of Thermodynamics , 2009 .
[6] V. Ozoliņš,et al. Incorporating first-principles energetics in computational thermodynamics approaches , 2002 .
[7] Chu-Chun Fu,et al. Stability and mobility of mono- and di-interstitials in alpha-Fe. , 2004, Physical review letters.
[8] Lin H. Yang,et al. First-principles formation energies of monovacancies in bcc transition metals , 2000 .
[9] F. Dyment,et al. Sb diffusion in α-Fe , 2005 .
[10] Marcel H. F. Sluiter,et al. Impurity diffusion activation energies in Al from first principles , 2009 .
[11] J. Foct,et al. Ab initio study of foreign interstitial atom (C, N) interactions with intrinsic point defects in α-Fe , 2004 .
[12] Joseph K. L. Lai,et al. Creep behavior of a β′(NiAl) precipitation strengthened ferritic Fe–Cr–Ni–Al alloy , 1998 .
[13] M. Feller-Kniepmeier,et al. Diffusion of Zn in α‐Fe single crystals , 1981 .
[14] G. Ceder,et al. First principles calculation of the interdiffusion coefficient in binary alloys. , 2005, Physical review letters.
[15] M. Asta,et al. First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al–TM (TM = Ti, Zr and Hf) systems: A comparison of cluster expansion and supercell methods , 2008 .
[16] Janne Wallenius,et al. Ab initio study of Cr interactions with point defects in bcc Fe , 2007 .
[17] Y. Iijima,et al. Influence of magnetization change on solute diffusion in iron , 2005 .
[18] Y. Iijima,et al. Self-diffusion and isotope effect in α-iron , 1988 .
[19] Y. Iijima,et al. Diffusion of tungsten in α-iron , 2007 .
[20] Seungwu Han,et al. Development of new interatomic potentials appropriate for crystalline and liquid iron , 2003 .
[21] C. Becquart,et al. Diffusion of phosphorus in α-Fe : An ab initio study , 2005 .
[22] M. Tuckerman,et al. IN CLASSICAL AND QUANTUM DYNAMICS IN CONDENSED PHASE SIMULATIONS , 1998 .
[23] P. Hänggi,et al. Reaction-rate theory: fifty years after Kramers , 1990 .
[24] Phillip B. Abel,et al. Applied Computational Materials Modeling , 2007 .
[25] P. Blaha,et al. Ab initio study of the martensitic bcc-hcp transformation in iron , 1998 .
[26] Yoshihiro Yamazaki,et al. Diffusion of molybdenum in α-iron , 2002 .
[27] J. Wallenius,et al. Carbon impurity dissolution and migration in bcc Fe-Cr: First-principles calculations , 2008 .
[28] N. Soneda,et al. First-principles calculations of vacancy–solute element interactions in body-centered cubic iron , 2009 .
[29] Hans Leo Lukas,et al. Computational Thermodynamics: The Calphad Method , 2007 .
[30] L. Girifalco. Activation energy for diffusion in ferromagnetics , 1962 .
[31] D. James,et al. Self-diffusion and diffusion of cobalt in alpha and delta-iron , 1966 .
[32] Paxton,et al. High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.
[33] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[34] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[35] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[36] K. Hirano,et al. Self-diffusion in the Iron-Molybdenum System , 1976 .
[37] Jean Philibert,et al. Atom movements: Diffusion and mass transport in solids , 1991 .
[38] A. Janotti,et al. Solute diffusion in metals: larger atoms can move faster. , 2004, Physical review letters.
[39] A. Janotti,et al. Diffusion rates of 3d transition metal solutes in nickel by first-principles calculations , 2005 .
[40] C. Domain,et al. Ab initio contribution to the study of complexes formed during dilute FeCu alloys radiation , 2003 .
[41] C. Domain,et al. Ab initio calculations of defects in Fe and dilute Fe-Cu alloys , 2001 .
[42] G. Kresse,et al. Ab initio molecular dynamics for liquid metals. , 1993 .
[43] Chris Wolverton,et al. First principles impurity diffusion coefficients , 2009 .
[44] W. Jost,et al. Physical Chemistry, An Advanced Treatise , 1974 .
[45] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[46] G. Ghosh,et al. Integrated design of Nb-based superalloys: Ab initio calculations, computational thermodynamics and kinetics, and experimental results , 2007 .
[47] R. Drautz,et al. Thermodynamic properties from ab‐initio calculations: New theoretical developments, and applications to various materials systems , 2005 .
[48] C. Herzig,et al. Tracer diffusion of titanium in α‐iron , 1995 .
[49] L. Girifalco,et al. Analysis of diffusion in ferromagnets , 1976 .
[50] A. D. Romig,et al. The diffusivity of Ni in Fe-Ni and Fe-Ni-P martensites , 1981 .
[51] R. Holmestad,et al. First-principles calculations of impurity diffusion activation energies in Al , 2006 .
[52] M. S. Anand,et al. Diffusion of Copper in Iron , 1966 .
[53] Stefano de Gironcoli,et al. First-principles study of vacancy formation and migration energies in tantalum , 1999 .
[54] C. J. Smithells,et al. Smithells metals reference book , 1949 .
[55] Axel van de Walle,et al. Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit , 2009, 0906.1608.
[56] J. Růžičková,et al. Self-diffusion of iron in α-phase of iron and Fe-Cr alloys , 1973 .
[57] Hannes Jonsson,et al. Reversible work transition state theory: application to dissociative adsorption of hydrogen , 1995 .
[58] Fu,et al. Calculations for the transverse N-point phonons in bcc Zr, Nb, and Mo. , 1985, Physical review. B, Condensed matter.
[59] K. Obrtlík,et al. Diffusion of vanadium in the Fe–V system , 1979 .
[60] G. D. Rieck,et al. Diffusion in the MoNi, MoFe and MoCo slstems , 1974 .