Calculation of impurity diffusivities in α-Fe using first-principles methods

Abstract Self- and impurity diffusivities in body-centered-cubic (bcc) iron have been calculated within the formalisms of harmonic transition-state theory and the Le Claire nine-frequency model for vacancy-mediated diffusion. The approach combines first-principles calculations of vacancy formation, migration, and solute-binding enthalpies and entropies in the ferromagnetic phase, with an empirical relationship for the effect of magnetic disorder on diffusion activation energies. Calculated Fe self-diffusion and Mo and W impurity-diffusion coefficients are shown to agree within a factor of five with the most recent experimental measurements in both the ferromagnetic and paramagnetic phases. Calculated diffusion coefficients for Mo and W impurities are comparable to or larger than that for Fe self-diffusion at all temperatures below the α–γ phase transition. Calculated activation energies for Ta and Hf impurities suggest that these solutes should also display impurity-diffusion coefficients larger than that for self-diffusion in body-centered cubic Fe.

[1]  Stefano de Gironcoli,et al.  Vacancy self-diffusion parameters in tungsten: Finite electron-temperature LDA calculations , 1998 .

[2]  Gerhard Sauthoff,et al.  The strengthening effect of (Ni, Fe)Al precipitates on the mechanical properties at high temperatures of ferritic Fe–Al–Ni–Cr alloys , 2005 .

[3]  K.H.J. Buschow,et al.  Encyclopedia of Materials: Science and Technology , 2004 .

[4]  Igor A. Abrikosov,et al.  Configurational thermodynamics of alloys from first principles: effective cluster interactions , 2008 .

[5]  Zi-kui Liu First-Principles Calculations and CALPHAD Modeling of Thermodynamics , 2009 .

[6]  V. Ozoliņš,et al.  Incorporating first-principles energetics in computational thermodynamics approaches , 2002 .

[7]  Chu-Chun Fu,et al.  Stability and mobility of mono- and di-interstitials in alpha-Fe. , 2004, Physical review letters.

[8]  Lin H. Yang,et al.  First-principles formation energies of monovacancies in bcc transition metals , 2000 .

[9]  F. Dyment,et al.  Sb diffusion in α-Fe , 2005 .

[10]  Marcel H. F. Sluiter,et al.  Impurity diffusion activation energies in Al from first principles , 2009 .

[11]  J. Foct,et al.  Ab initio study of foreign interstitial atom (C, N) interactions with intrinsic point defects in α-Fe , 2004 .

[12]  Joseph K. L. Lai,et al.  Creep behavior of a β′(NiAl) precipitation strengthened ferritic Fe–Cr–Ni–Al alloy , 1998 .

[13]  M. Feller-Kniepmeier,et al.  Diffusion of Zn in α‐Fe single crystals , 1981 .

[14]  G. Ceder,et al.  First principles calculation of the interdiffusion coefficient in binary alloys. , 2005, Physical review letters.

[15]  M. Asta,et al.  First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al–TM (TM = Ti, Zr and Hf) systems: A comparison of cluster expansion and supercell methods , 2008 .

[16]  Janne Wallenius,et al.  Ab initio study of Cr interactions with point defects in bcc Fe , 2007 .

[17]  Y. Iijima,et al.  Influence of magnetization change on solute diffusion in iron , 2005 .

[18]  Y. Iijima,et al.  Self-diffusion and isotope effect in α-iron , 1988 .

[19]  Y. Iijima,et al.  Diffusion of tungsten in α-iron , 2007 .

[20]  Seungwu Han,et al.  Development of new interatomic potentials appropriate for crystalline and liquid iron , 2003 .

[21]  C. Becquart,et al.  Diffusion of phosphorus in α-Fe : An ab initio study , 2005 .

[22]  M. Tuckerman,et al.  IN CLASSICAL AND QUANTUM DYNAMICS IN CONDENSED PHASE SIMULATIONS , 1998 .

[23]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[24]  Phillip B. Abel,et al.  Applied Computational Materials Modeling , 2007 .

[25]  P. Blaha,et al.  Ab initio study of the martensitic bcc-hcp transformation in iron , 1998 .

[26]  Yoshihiro Yamazaki,et al.  Diffusion of molybdenum in α-iron , 2002 .

[27]  J. Wallenius,et al.  Carbon impurity dissolution and migration in bcc Fe-Cr: First-principles calculations , 2008 .

[28]  N. Soneda,et al.  First-principles calculations of vacancy–solute element interactions in body-centered cubic iron , 2009 .

[29]  Hans Leo Lukas,et al.  Computational Thermodynamics: The Calphad Method , 2007 .

[30]  L. Girifalco Activation energy for diffusion in ferromagnetics , 1962 .

[31]  D. James,et al.  Self-diffusion and diffusion of cobalt in alpha and delta-iron , 1966 .

[32]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[33]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[34]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[35]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[36]  K. Hirano,et al.  Self-diffusion in the Iron-Molybdenum System , 1976 .

[37]  Jean Philibert,et al.  Atom movements: Diffusion and mass transport in solids , 1991 .

[38]  A. Janotti,et al.  Solute diffusion in metals: larger atoms can move faster. , 2004, Physical review letters.

[39]  A. Janotti,et al.  Diffusion rates of 3d transition metal solutes in nickel by first-principles calculations , 2005 .

[40]  C. Domain,et al.  Ab initio contribution to the study of complexes formed during dilute FeCu alloys radiation , 2003 .

[41]  C. Domain,et al.  Ab initio calculations of defects in Fe and dilute Fe-Cu alloys , 2001 .

[42]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[43]  Chris Wolverton,et al.  First principles impurity diffusion coefficients , 2009 .

[44]  W. Jost,et al.  Physical Chemistry, An Advanced Treatise , 1974 .

[45]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[46]  G. Ghosh,et al.  Integrated design of Nb-based superalloys: Ab initio calculations, computational thermodynamics and kinetics, and experimental results , 2007 .

[47]  R. Drautz,et al.  Thermodynamic properties from ab‐initio calculations: New theoretical developments, and applications to various materials systems , 2005 .

[48]  C. Herzig,et al.  Tracer diffusion of titanium in α‐iron , 1995 .

[49]  L. Girifalco,et al.  Analysis of diffusion in ferromagnets , 1976 .

[50]  A. D. Romig,et al.  The diffusivity of Ni in Fe-Ni and Fe-Ni-P martensites , 1981 .

[51]  R. Holmestad,et al.  First-principles calculations of impurity diffusion activation energies in Al , 2006 .

[52]  M. S. Anand,et al.  Diffusion of Copper in Iron , 1966 .

[53]  Stefano de Gironcoli,et al.  First-principles study of vacancy formation and migration energies in tantalum , 1999 .

[54]  C. J. Smithells,et al.  Smithells metals reference book , 1949 .

[55]  Axel van de Walle,et al.  Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit , 2009, 0906.1608.

[56]  J. Růžičková,et al.  Self-diffusion of iron in α-phase of iron and Fe-Cr alloys , 1973 .

[57]  Hannes Jonsson,et al.  Reversible work transition state theory: application to dissociative adsorption of hydrogen , 1995 .

[58]  Fu,et al.  Calculations for the transverse N-point phonons in bcc Zr, Nb, and Mo. , 1985, Physical review. B, Condensed matter.

[59]  K. Obrtlík,et al.  Diffusion of vanadium in the Fe–V system , 1979 .

[60]  G. D. Rieck,et al.  Diffusion in the MoNi, MoFe and MoCo slstems , 1974 .