A Triad of Cardioid Sensors in Orthogonal Orientation and Spatial Collocation—Its Spatial-Matched-Filter-Type Beam-Pattern

This paper proposes a new configuration of acoustic sensors—the collocation of three cardioid sensors in perpendicular orientation, in order to increase the mainlobe-to-sidelobe height ratio (possibly to <inline-formula> <tex-math notation="LaTeX">$\infty$</tex-math></inline-formula>). This paper will analyze such a proposed triad's “spatial matched filter” beam-pattern that is independent of the frequency/spectrum of the incident signals. Specifically, this paper will analytically derive the mainlobe's pointing error in azimuth-elevation, the mainlobe's two-dimensional beam “width,” the necessary and sufficient conditions for a sidelobe to exist, the mainlobe-to-sidelobe height ratio, and the array gain. These above characteristics depend on the cardioids’ “cardiodicity parameter” and on the beam's nominal “look direction.”

[1]  Michael D. Zoltowski,et al.  Closed-form underwater acoustic direction-finding with arbitrarily spaced vector hydrophones at unknown locations , 1997 .

[2]  Albert H. Nuttall,et al.  Directivity factors for linear arrays of velocity sensors , 2001 .

[3]  A. Baldacci,et al.  Unambiguous triplet array beamforming and calibration algorithms to facilitate an environmentally adaptive active sonar concept , 2006, OCEANS 2006.

[4]  Jianfeng Chen,et al.  Theoretical comparisons of dual microphone systems , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[5]  Douglas L. Jones,et al.  Beamformer performance with acoustic vector sensors in air. , 2006, The Journal of the Acoustical Society of America.

[6]  S.P. Beerens,et al.  Adaptive port-starboard beamforming of triplet sonar arrays , 2005, IEEE Journal of Oceanic Engineering.

[7]  Christof Faller,et al.  Design and Limitations of Non-Coincidence Correction Filters for Soundfield Microphones , 2009 .

[8]  W.S. Hodgkiss,et al.  A Vertical Array Of Directional Acoustic Sensors , 1992, OCEANS 92 Proceedings@m_Mastering the Oceans Through Technology.

[9]  Parkins,et al.  Error analysis of a practical energy density sensor , 2000, The Journal of the Acoustical Society of America.

[10]  Kainam Thomas Wong,et al.  Beam patterns of an underwater acoustic vector hydrophone , 2000, Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing (Cat. No.00TH8496).

[11]  W. M. Rabinowitz,et al.  On the potential of fixed arrays for hearing aids. , 1993, The Journal of the Acoustical Society of America.

[12]  S Sideman,et al.  Simulation of fixed microphone arrays for directional hearing aids. , 1996, The Journal of the Acoustical Society of America.

[13]  W Soede,et al.  Development of a directional hearing instrument based on array technology. , 1993, The Journal of the Acoustical Society of America.

[14]  Harry F. Olson The Quest for Directional Microphones at RCA , 1980 .

[15]  K.T. Wong,et al.  CramÉr-Rao Bounds for Direction Finding by an Acoustic Vector Sensor Under Nonideal Gain-Phase Responses, Noncollocation, or Nonorthogonal Orientation , 2009, IEEE Sensors Journal.

[16]  D. Trivett,et al.  ARAP - Deep Ocean Vector Sensor Research Array , 2006, OCEANS 2006.

[17]  Doekle Reinder Yntema,et al.  A four particle velocity sensor device , 2006 .

[18]  A. Nuttall,et al.  A Comparison of Vector-Sensing and Scalar-Sensing Linear Arrays. , 1997 .

[19]  Yue Ivan Wu,et al.  Acoustic Near-Field Source-Localization by Two Passive Anchor-Nodes , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[20]  Emanuel A. P. Habets,et al.  A Generalized Theorem on the Average Array Directivity Factor , 2013, IEEE Signal Processing Letters.

[21]  W. Hodgkiss,et al.  Energetics of the deep ocean’s infrasonic sound field , 1991 .

[22]  Wieslaw Woszczyk A Microphone Technique Applying the Principle of Second-Order-Gradient Unidirectionality , 1984 .

[23]  J. C. Shipps,et al.  A miniature vector sensor for line array applications , 2003, Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492).

[24]  M. Elwenspoek,et al.  Three-dimensional sound intensity measurements using Microflown particle velocity sensors , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[25]  Yue Ivan Wu,et al.  A directionally tunable but frequency-invariant beamformer on an acoustic velocity-sensor triad to enhance speech perception. , 2012, The Journal of the Acoustical Society of America.

[26]  William S. Hodgkiss,et al.  The simultaneous measurement of infrasonic acoustic particle velocity and acoustic pressure in the ocean by freely drifting Swallow floats , 1991 .

[27]  Jacob Benesty,et al.  Audio Signal Processing for Next-Generation Multimedia Communication Systems , 2004 .

[28]  R. P. Glover,et al.  A Review of Cardioid Type Unidirectional Microphones , 1940 .

[29]  Sérgio M. Jesus,et al.  Direction-finding arrays of directional sensors for randomly located sources , 2016, IEEE Transactions on Aerospace and Electronic Systems.

[30]  Arye Nehorai,et al.  Acoustic vector-sensor array processing , 1994, IEEE Trans. Signal Process..

[31]  Anja Walter,et al.  Audio Signal Processing For Next Generation Multimedia Communication Systems , 2016 .

[32]  L. del Val,et al.  Sidelobe Evaluation of Cardioid-Patterned Sensor Array , 2008, 2008 38th European Microwave Conference.