Diffusion maps-based image clustering

In the clustering of large number of images using low-level features, one of the problems encountered is the high dimensional feature space. The high dimensionality of feature spaces leads to unnecessary cost in feature selection and also in the distance measurement during the clustering process. In this paper, we propose an approach to reduce the dimensionality of the feature space based on diffusion maps. In the proposed approach, each image is represented by a set of tiles. A visual keyword-image matrix is derived from classifying these tiles into a set of clusters and counting the occurrence of each cluster in each image of our database. The visual keyword-image matrix is similar to the term-document matrix in information retrieval. We use diffusion maps to reduce the dimensionality of visual keyword matrix. By reducing the dimensionality of the image representation, we can save computation cost significantly. We compare the performance between the proposed approach and the approach that uses the global MPEG-7 color descriptors. The results demonstrate the improvements.

[1]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Anil K. Jain,et al.  Image classification for content-based indexing , 2001, IEEE Trans. Image Process..

[3]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[4]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[5]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[6]  Jiayu Tang,et al.  Image Auto-Annotation using a Statistical Model with Salient Regions , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[7]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[8]  Trevor F. Cox,et al.  Metric multidimensional scaling , 2000 .

[9]  Ambuj K. Singh,et al.  ViVo: visual vocabulary construction for mining biomedical images , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[10]  Akio Yamada,et al.  The MPEG-7 color layout descriptor: a compact image feature description for high-speed image/video segment retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[11]  Stephen E. Robertson,et al.  Probabilistic models of indexing and searching , 1980, SIGIR '80.

[12]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[13]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[14]  Bruce A. Draper,et al.  Recognizing faces with PCA and ICA , 2003, Comput. Vis. Image Underst..

[15]  Yair Weiss,et al.  Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[16]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[17]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[18]  Ann B. Lee,et al.  Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  George Karypis,et al.  CLUTO - A Clustering Toolkit , 2002 .

[20]  B. S. Manjunath,et al.  Introduction to MPEG-7: Multimedia Content Description Interface , 2002 .

[21]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[22]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Jitendra Malik,et al.  Blobworld: A System for Region-Based Image Indexing and Retrieval , 1999, VISUAL.

[24]  Farshad Fotouhi,et al.  Using Coherent Semantic Subpaths to Derive Emergent Semantics , 2004, KES.

[25]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[26]  Jianbo Shi,et al.  A Random Walks View of Spectral Segmentation , 2001, AISTATS.

[27]  William I. Grosky,et al.  Narrowing the semantic gap - improved text-based web document retrieval using visual features , 2002, IEEE Trans. Multim..

[28]  Rajeev Agrawal,et al.  Image Clustering Using Multimodal Keywords , 2006, SAMT.

[29]  Anil K. Jain,et al.  Multiobjective data clustering , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[30]  Rajeev Agrawal,et al.  Image Retrieval Using Multimodal Keywords , 2006, Eighth IEEE International Symposium on Multimedia (ISM'06).