Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis

[1]  N. Beerenwinkel,et al.  Neutrophils escort circulating tumour cells to enable cell cycle progression , 2019, Nature.

[2]  F. Castro-Giner,et al.  Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding , 2019, Cell.

[3]  Yang Shen,et al.  Homophilic CD44 Interactions Mediate Tumor Cell Aggregation and Polyclonal Metastasis in Patient-Derived Breast Cancer Models. , 2018, Cancer discovery.

[4]  R. Weinberg,et al.  New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer , 2018, Nature reviews. Molecular cell biology.

[5]  R. Plummer,et al.  Detection of circulating tumour cell clusters in human glioblastoma , 2018, British Journal of Cancer.

[6]  E. Furth,et al.  EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration. , 2018, Developmental cell.

[7]  M. Kriegsmann,et al.  Regulation of Epithelial Plasticity Determines Metastatic Organotropism in Pancreatic Cancer. , 2018, Developmental cell.

[8]  T. Voet,et al.  Identification of the tumour transition states occurring during EMT , 2018, Nature.

[9]  David L. Marron,et al.  Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer , 2018, The Journal of clinical investigation.

[10]  R. Schiff,et al.  Perspective on Circulating Tumor Cell Clusters: Why It Takes a Village to Metastasize. , 2018, Cancer research.

[11]  V. Keshamouni,et al.  Epithelial-mesenchymal transition leads to NK cell–mediated metastasis-specific immunosurveillance in lung cancer , 2018, The Journal of clinical investigation.

[12]  L. Galluzzi,et al.  Control of Metastasis by NK Cells. , 2017, Cancer cell.

[13]  R. Zeillinger,et al.  Small cell lung cancer: model of circulating tumor cell tumorospheres in chemoresistance , 2017, Scientific Reports.

[14]  R. Weinberg,et al.  Emerging Biological Principles of Metastasis , 2017, Cell.

[15]  C. Shaw,et al.  CELF1 is a central node in post-transcriptional regulatory programmes underlying EMT , 2016, Nature Communications.

[16]  P. Bendahl,et al.  Prognostic impact of circulating tumor cell apoptosis and clusters in serial blood samples from patients with metastatic breast cancer in a prospective observational cohort , 2016, BMC Cancer.

[17]  Eva Balsa-Canto,et al.  AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology , 2016, Bioinform..

[18]  James E. Verdone,et al.  Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters , 2016, Proceedings of the National Academy of Sciences.

[19]  Yibin Kang,et al.  Probing the Fifty Shades of EMT in Metastasis. , 2016, Trends in cancer.

[20]  L. Lanier,et al.  Natural killer cell memory in infection, inflammation and cancer , 2016, Nature Reviews Immunology.

[21]  J. Massagué,et al.  Metastatic colonization by circulating tumour cells , 2016, Nature.

[22]  R. Datar,et al.  Identification of Cancer-Associated Fibroblasts in Circulating Blood from Patients with Metastatic Breast Cancer. , 2015, Cancer research.

[23]  A. Björklund,et al.  Therapeutic Potential and Challenges of Natural Killer Cells in Treatment of Solid Tumors , 2015, Front. Immunol..

[24]  M. Nykter,et al.  The Evolutionary History of Lethal Metastatic Prostate Cancer , 2015, Nature.

[25]  J. Pollard,et al.  Immune cell promotion of metastasis , 2015, Nature Reviews Immunology.

[26]  C. Perou,et al.  Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential , 2015, Oncogene.

[27]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[28]  Sridhar Ramaswamy,et al.  Circulating Tumor Cell Clusters Are Oligoclonal Precursors of Breast Cancer Metastasis , 2014, Cell.

[29]  Samy Lamouille,et al.  Molecular mechanisms of epithelial–mesenchymal transition , 2014, Nature Reviews Molecular Cell Biology.

[30]  Andrew J. Ewald,et al.  Collective Invasion in Breast Cancer Requires a Conserved Basal Epithelial Program , 2013, Cell.

[31]  A. G. de Herreros,et al.  Epithelial–Mesenchymal Transition Induces an Antitumor Immune Response Mediated by NKG2D Receptor , 2013, The Journal of Immunology.

[32]  Jing Yang,et al.  Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. , 2012, Cancer cell.

[33]  Richard O Hynes,et al.  Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. , 2011, Cancer cell.

[34]  N. Garmy,et al.  The NKG2D Ligands RAE-1δ and RAE-1ε Differ with Respect to Their Receptor Affinity, Expression Profiles and Transcriptional Regulation , 2010, PloS one.

[35]  Kakajan Komurov,et al.  Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes , 2010, Proceedings of the National Academy of Sciences.

[36]  R. Huang,et al.  Epithelial-Mesenchymal Transitions in Development and Disease , 2009, Cell.

[37]  D. Greiner,et al.  Non‐obese diabetic–recombination activating gene‐1 (NOD–Rag 1 null) interleukin (IL)‐2 receptor common gamma chain (IL 2 rγnull) null mice: a radioresistant model for human lymphohaematopoietic engraftment , 2008, Clinical and experimental immunology.

[38]  M. Korpal,et al.  The miR-200 Family Inhibits Epithelial-Mesenchymal Transition and Cancer Cell Migration by Direct Targeting of E-cadherin Transcriptional Repressors ZEB1 and ZEB2* , 2008, Journal of Biological Chemistry.

[39]  T. Brabletz,et al.  A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells , 2008, EMBO reports.

[40]  Eric Vivier,et al.  Functions of natural killer cells , 2008, Nature Immunology.

[41]  G. Goodall,et al.  The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 , 2008, Nature Cell Biology.

[42]  Lewis L Lanier,et al.  Up on the tightrope: natural killer cell activation and inhibition , 2008, Nature Immunology.

[43]  M. Weller,et al.  TGF-β and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells , 2006 .

[44]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Roland K. Strong,et al.  Interactions between NKG2x Immunoreceptors and HLA-E Ligands Display Overlapping Affinities and Thermodynamics1 , 2005, The Journal of Immunology.

[46]  Tanja Fehm,et al.  Circulating Tumor Cells in Patients with Breast Cancer Dormancy , 2004, Clinical Cancer Research.

[47]  A. Diefenbach,et al.  A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity , 2003, European journal of immunology.

[48]  D. Fremont,et al.  Cutting Edge: Murine UL16-Binding Protein-Like Transcript 1: A Newly Described Transcript Encoding a High-Affinity Ligand for Murine NKG2D1 , 2002, The Journal of Immunology.

[49]  M. Smyth NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. , 2001, International immunology.

[50]  J. Altman,et al.  Mouse CD94/NKG2A Is a Natural Killer Cell Receptor for the Nonclassical Major Histocompatibility Complex (MHC) Class I Molecule Qa-1b , 1998, The Journal of experimental medicine.

[51]  Chyung-Ru Wang,et al.  Impaired NK1+ T cell development and early IL-4 production in CD1-deficient mice. , 1997, Immunity.

[52]  T. Yoneda,et al.  In vivo effect of anti-asialo GM1 antibody on natural killer activity , 1981, Nature.

[53]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[54]  M. Smyth,et al.  NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. , 2001, International immunology.