Genomic landscape of human, bat, and ex vivo DNA transposon integrations.

The integration and fixation preferences of DNA transposons, one of the major classes of eukaryotic transposable elements, have never been evaluated comprehensively on a genome-wide scale. Here, we present a detailed study of the distribution of DNA transposons in the human and bat genomes. We studied three groups of DNA transposons that integrated at different evolutionary times: 1) ancient (>40 My) and currently inactive human elements, 2) younger (<40 My) bat elements, and 3) ex vivo integrations of piggyBat and Sleeping Beauty elements in HeLa cells. Although the distribution of ex vivo elements reflected integration preferences, the distribution of human and (to a lesser extent) bat elements was also affected by selection. We used regression techniques (linear, negative binomial, and logistic regression models with multiple predictors) applied to 20-kb and 1-Mb windows to investigate how the genomic landscape in the vicinity of DNA transposons contributes to their integration and fixation. Our models indicate that genomic landscape explains 16-79% of variability in DNA transposon genome-wide distribution. Importantly, we not only confirmed previously identified predictors (e.g., DNA conformation and recombination hotspots) but also identified several novel predictors (e.g., signatures of double-strand breaks and telomere hexamer). Ex vivo integrations showed a bias toward actively transcribed regions. Older DNA transposons were located in genomic regions scarce in most conserved elements-likely reflecting purifying selection. Our study highlights how DNA transposons are integral to the evolution of bat and human genomes, and has implications for the development of DNA transposon assays for gene therapy and mutagenesis applications.

[1]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[2]  D. Rio,et al.  Interplay between Drosophila Bloom's syndrome helicase and Ku autoantigen during nonhomologous end joining repair of P element-induced DNA breaks , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Z. Izsvák,et al.  The expanding universe of transposon technologies for gene and cell engineering , 2010, Mobile DNA.

[4]  D. Largaespada,et al.  A transposon and transposase system for human application. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[5]  H. Kanamori,et al.  Identification and mapping of expressed genes, simple sequence repeats and transposable elements in centromeric regions of rice chromosomes. , 2006, DNA research : an international journal for rapid publication of reports on genes and genomes.

[6]  Alfred L George,et al.  PiggyBac transposon-mediated gene transfer in human cells. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[7]  Daniel J. Blankenberg,et al.  Galaxy: A Web‐Based Genome Analysis Tool for Experimentalists , 2010, Current protocols in molecular biology.

[8]  A. Handler,et al.  Use of the piggyBac transposon for germ-line transformation of insects. , 2002, Insect biochemistry and molecular biology.

[9]  W. Gilbert,et al.  Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis , 1988, Nature.

[10]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[11]  P. Siguier,et al.  Single-Stranded DNA Transposition Is Coupled to Host Replication , 2010, Cell.

[12]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[13]  D. O’brochta,et al.  DNA sequence requirements for hobo transposable element transposition in Drosophila melanogaster , 2011, Genetica.

[14]  F. Bushman,et al.  A resurrected mammalian hAT transposable element and a closely related insect element are highly active in human cell culture , 2012, Proceedings of the National Academy of Sciences.

[15]  A. Malkova,et al.  Large inverted repeats in the vicinity of a single double-strand break strongly affect repair in yeast diploids lacking Rad51. , 2008, Mutation research.

[16]  Owen T McCann,et al.  Replication timing of the human genome. , 2004, Human molecular genetics.

[17]  Min Han,et al.  Efficient Transposition of the piggyBac (PB) Transposon in Mammalian Cells and Mice , 2005, Cell.

[18]  Mary Goldman,et al.  The UCSC Genome Browser database: extensions and updates 2013 , 2012, Nucleic Acids Res..

[19]  R. Mitra,et al.  Functional characterization of piggyBat from the bat Myotis lucifugus unveils an active mammalian DNA transposon , 2012, Proceedings of the National Academy of Sciences.

[20]  S. Russell,et al.  Transposable elements as tools for genomics and genetics in Drosophila. , 2003, Briefings in functional genomics & proteomics.

[21]  M. Batzer,et al.  The impact of retrotransposons on human genome evolution , 2009, Nature Reviews Genetics.

[22]  Andrew J. Heidel,et al.  Centromere sequence and dynamics in Dictyostelium discoideum , 2009, Nucleic acids research.

[23]  A. Spradling,et al.  The Drosophila Gene Disruption Project: Progress Using Transposons With Distinctive Site Specificities , 2011, Genetics.

[24]  J. V. Moran,et al.  Dynamic interactions between transposable elements and their hosts , 2011, Nature Reviews Genetics.

[25]  Ju Yan,et al.  Endings in the middle: current knowledge of interstitial telomeric sequences. , 2008, Mutation research.

[26]  Casey M. Bergman,et al.  Discovering and detecting transposable elements in genome sequences , 2007, Briefings Bioinform..

[27]  R. Durbin,et al.  A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis , 2008, Nature Biotechnology.

[28]  N. Bresolin,et al.  Fixation of conserved sequences shapes human intron size and influences transposon-insertion dynamics. , 2005, Trends in genetics : TIG.

[29]  A. Nekrutenko,et al.  Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences , 2010, Genome Biology.

[30]  P. Capy,et al.  The struggle for life of the genome's selfish architects , 2011, Biology Direct.

[31]  N. Bresolin,et al.  Gene function and expression level influence the insertion/fixation dynamics of distinct transposon families in mammalian introns , 2006, Genome Biology.

[32]  L. Mularoni,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:DNA transposon Hermes inserts into DNA in nucleosome-free regions in vivo , 2010 .

[33]  A. Zeileis,et al.  Regression Models for Count Data in R , 2008 .

[34]  Kateryna D. Makova,et al.  Distinct Mutational Behaviors Differentiate Short Tandem Repeats from Microsatellites in the Human Genome , 2012, Genome biology and evolution.

[35]  Z. Izsvák,et al.  Translating Sleeping Beauty transposition into cellular therapies: Victories and challenges , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[36]  Jiaming Yin,et al.  Characterization and functional annotation of nested transposable elements in eukaryotic genomes. , 2012, Genomics.

[37]  Marlen S. Clark,et al.  Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods , 2008, Proceedings of the National Academy of Sciences.

[38]  C. Feschotte,et al.  Genome-Wide Characterization of Endogenous Retroviruses in the Bat Myotis lucifugus Reveals Recent and Diverse Infections , 2013, Journal of Virology.

[39]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .

[40]  R. Kunze,et al.  Maize Activator transposase has a bipartite DNA binding domain that recognizes subterminal sequences and the terminal inverted repeats , 1997, Molecular and General Genetics MGG.

[41]  Ming Yi,et al.  Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes , 2010, Nucleic Acids Res..

[42]  S. Dalton,et al.  Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. , 2010, Genome research.

[43]  J. Jurka,et al.  Helitrons on a roll: eukaryotic rolling-circle transposons. , 2007, Trends in genetics : TIG.

[44]  F. Mosteller,et al.  Understanding robust and exploratory data analysis , 1985 .

[45]  Shawn M. Burgess,et al.  High-Resolution Genome-Wide Mapping of Transposon Integration in Mammals , 2005, Molecular and Cellular Biology.

[46]  B. Papp,et al.  The Ancient mariner Sails Again: Transposition of the Human Hsmar1 Element by a Reconstructed Transposase and Activities of the SETMAR Protein on Transposon Ends , 2007, Molecular and Cellular Biology.

[47]  C. Mondello,et al.  Contribution of telomerase RNA retrotranscription to DNA double-strand break repair during mammalian genome evolution , 2007, Genome Biology.

[48]  Guliang Wang,et al.  Z-DNA-forming sequences generate large-scale deletions in mammalian cells. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Milovan Krnjajic,et al.  Active Alu elements are passed primarily through paternal germlines. , 2002, Theoretical population biology.

[50]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[51]  Perry B. Hackett,et al.  Structure-based prediction of insertion-site preferences of transposons into chromosomes , 2006, Nucleic acids research.

[52]  Shankar Balasubramanian,et al.  G-quadruplexes in promoters throughout the human genome , 2006, Nucleic acids research.

[53]  Daniel J. Blankenberg,et al.  Galaxy: a platform for interactive large-scale genome analysis. , 2005, Genome research.

[54]  R. Kunze,et al.  Regulation of activator/dissociation transposition by replication and DNA methylation. , 2001, Genetics.

[55]  Keith R. Oliver,et al.  Transposable elements: powerful facilitators of evolution , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[56]  Hatem Zayed,et al.  The Sleeping Beauty transposable element: evolution, regulation and genetic applications. , 2004, Current issues in molecular biology.

[57]  Sabine Fritz,et al.  Transposon mutagenesis of the mouse germline. , 2003, Genetics.

[58]  Genome 10 K : A Proposal to Obtain Whole-Genome Sequence for 10 000 Vertebrate Species GENOME 10 K COMMUNITY OF SCIENTISTS * , 2009 .

[59]  Todd E Scheetz,et al.  A Hyperactive Transposase Promotes Persistent Gene Transfer of a piggyBac DNA Transposon , 2012, Molecular therapy. Nucleic acids.

[60]  P. Hackett,et al.  Predicting preferential DNA vector insertion sites: implications for functional genomics and gene therapy , 2007, Genome Biology.

[61]  J. V. Moran,et al.  Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres , 2007, Nature.

[62]  S. Wessler,et al.  Insertion Preference of Maize and Rice Miniature Inverted Repeat Transposable Elements as Revealed by the Analysis of Nested Elements Article, publication date, and citation information can be found at www.aspb.org/cgi/doi/10/1105/tpc.010235. , 2001, The Plant Cell Online.

[63]  P. Donnelly,et al.  A Fine-Scale Map of Recombination Rates and Hotspots Across the Human Genome , 2005, Science.

[64]  P. Schnable,et al.  DNA sequence analyses support the role of interrupted gap repair in the origin of internal deletions of the maize transposon, MuDR. , 1996, Genetics.

[65]  Sanford Weisberg,et al.  An R Companion to Applied Regression , 2010 .

[66]  Wilma K Olson,et al.  Target-site preferences of Sleeping Beauty transposons. , 2005, Journal of molecular biology.

[67]  Andreas Prlic,et al.  Ensembl 2007 , 2006, Nucleic Acids Res..

[68]  R. Plasterk The origin of footprints of the Tc1 transposon of Caenorhabditis elegans. , 1991, The EMBO journal.

[69]  Z. Izsvák,et al.  Retargeting transposon insertions by the adeno-associated virus Rep protein , 2012, Nucleic acids research.

[70]  Terrence S. Furey,et al.  The UCSC Genome Browser Database , 2003, Nucleic Acids Res..

[71]  D. Crothers,et al.  Structural origins of adenine-tract bending , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[72]  S. Tyekucheva,et al.  The genome-wide determinants of human and chimpanzee microsatellite evolution. , 2007, Genome research.

[73]  D. Ray,et al.  Bats with hATs: evidence for recent DNA transposon activity in genus Myotis. , 2006, Molecular biology and evolution.

[74]  Dixie L. Mager,et al.  Retroviral Repeat Sequences , 2005 .

[75]  Miriam K. Konkel,et al.  Centromere Remodeling in Hoolock leuconedys (Hylobatidae) by a New Transposable Element Unique to the Gibbons , 2012, Genome biology and evolution.

[76]  Michael H. Kutner Applied Linear Statistical Models , 1974 .

[77]  Kateryna D. Makova,et al.  Rescuing Alu: Recovery of New Inserts Shows LINE-1 Preserves Alu Activity through A-Tail Expansion , 2012, PLoS genetics.

[78]  G M Rubin,et al.  Insertion site preferences of the P transposable element in Drosophila melanogaster. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Francesca Chiaromonte,et al.  A genome-wide analysis of common fragile sites: What features determine chromosomal instability in the human genome? , 2012, Genome research.

[80]  J. Jurka,et al.  Duplication, coclustering, and selection of human Alu retrotransposons. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[82]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[83]  H. Dooner,et al.  Give-and-take: interactions between DNA transposons and their host plant genomes. , 2007, Current opinion in genetics & development.

[84]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[85]  R. Mann,et al.  The role of DNA shape in protein-DNA recognition , 2009, Nature.

[86]  A. Bacolla,et al.  Non-B DNA structure-induced genetic instability and evolution , 2009, Cellular and Molecular Life Sciences.

[87]  Peter Delves,et al.  Encyclopedia of life sciences , 2009 .

[88]  C. Feschotte,et al.  A role for host–parasite interactions in the horizontal transfer of transposons across phyla , 2010, Nature.

[89]  A. Spradling,et al.  Drosophila P elements preferentially transpose to replication origins , 2011, Proceedings of the National Academy of Sciences.

[90]  Casey M. Bergman,et al.  Testing the palindromic target site model for DNA transposon insertion using the Drosophila melanogaster P-element , 2008, Nucleic acids research.

[91]  W. Engels,et al.  High-frequency P element loss in Drosophila is homolog dependent , 1990, Cell.

[92]  D. Ray,et al.  Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. , 2008, Genome research.

[93]  R. Britten Transposable element insertions have strongly affected human evolution , 2010, Proceedings of the National Academy of Sciences.

[94]  Daniel F Voytas,et al.  Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. , 2002, Journal of molecular biology.

[95]  Michael Q. Zhang,et al.  Large-scale human promoter mapping using CpG islands , 2000, Nature Genetics.

[96]  E. Rubin,et al.  Abortive gap repair: underlying mechanism for Ds element formation , 1997, Molecular and cellular biology.

[97]  J. Bennetzen,et al.  Structure-based discovery and description of plant and animal Helitrons , 2009, Proceedings of the National Academy of Sciences.

[98]  G. Ast,et al.  Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements , 2009, Nucleic acids research.

[99]  J. E. Peters,et al.  Tn7 transposes proximal to DNA double-strand breaks and into regions where chromosomal DNA replication terminates. , 2000, Molecular cell.

[100]  L. Duret,et al.  Transposons but not retrotransposons are located preferentially in regions of high recombination rate in Caenorhabditis elegans. , 2000, Genetics.

[101]  P. Deininger,et al.  Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity. , 2007, Mutation research.

[102]  C. Feschotte,et al.  DNA transposons and the evolution of eukaryotic genomes. , 2007, Annual review of genetics.

[103]  Jef D Boeke,et al.  Human L1 element target‐primed reverse transcription in vitro , 2002, The EMBO journal.

[104]  A. Bradley,et al.  Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[105]  Roeland Kindt,et al.  Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies , 2006 .

[106]  J. Fox,et al.  Applied Regression Analysis and Generalized Linear Models , 2008 .

[107]  Mary Goldman,et al.  The UCSC Genome Browser database: extensions and updates 2011 , 2011, Nucleic Acids Res..

[108]  J. E. Peters,et al.  Transposition into Replicating DNA Occurs through Interaction with the Processivity Factor , 2009, Cell.

[109]  S. Celniker,et al.  Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase. , 2007, Genome research.

[110]  P. Jeggo,et al.  Healing the wounds inflicted by sleeping beauty transposition by double-strand break repair in mammalian somatic cells. , 2004, Molecular cell.

[111]  C. Feschotte,et al.  The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. , 2007, Genome research.

[112]  M. Batzer,et al.  Alu repeats and human genomic diversity , 2002, Nature Reviews Genetics.

[113]  J. Jurka,et al.  Rolling-circle transposons in eukaryotes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[114]  Cédric Feschotte,et al.  Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus , 2007, Proceedings of the National Academy of Sciences.

[115]  Kateryna D Makova,et al.  The (r)evolution of SINE versus LINE distributions in primate genomes: sex chromosomes are important. , 2010, Genome research.

[116]  R. Sinden,et al.  Target DNA Structure Plays a Critical Role in RAG Transposition , 2006, PLoS biology.

[117]  Cathryn J. Rehmeyer,et al.  Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae , 2006, Nucleic acids research.