Univariate Lattice Parameter Modulation of Single-Crystal-like Anatase TiO2 Hierarchical Nanowire Arrays to Improve Photoactivity

Strain engineering is a highly effective tool for tuning the lattice parameter and in turn optimizing the optical, electronic, and chemical properties of numerous functional materials. In conventio...

[1]  C. Berlinguette,et al.  Strain Engineering Electrocatalysts for Selective CO2 Reduction , 2019, ACS Energy Letters.

[2]  A. Fontcuberta i Morral,et al.  Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media , 2019, Nature Catalysis.

[3]  Xiaoqing Pan,et al.  Tunable intrinsic strain in two-dimensional transition metal electrocatalysts , 2019, Science.

[4]  Wei Che,et al.  Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis , 2019, Nature Energy.

[5]  W. Macyk,et al.  How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. , 2018, The journal of physical chemistry letters.

[6]  E. Choi,et al.  Active {001} Facet Exposed TiO2 Nanotubes Photocatalyst Filter for Volatile Organic Compounds Removal: From Material Development to Commercial Indoor Air Cleaner Application. , 2018, Environmental science & technology.

[7]  Wei Wen,et al.  Pyrrole-regulated precipitation of titania nanorods on polymer fabrics for photocatalytic degradation of trace toluene in air , 2018 .

[8]  Wei Wen,et al.  Titania nanowires functionalized polyester fabrics with enhanced photocatalytic and antibacterial performances. , 2018, Journal of hazardous materials.

[9]  S. Pokhrel,et al.  Determination of the Flat Band Potential of Nanoparticles in Porous Electrodes by Blocking the Substrate–Electrolyte Contact , 2018 .

[10]  J. Chen,et al.  Efficient promotion of charge transfer and separation in hydrogenated TiO2/WO3 with rich surface-oxygen-vacancies for photodecomposition of gaseous toluene. , 2018, Journal of hazardous materials.

[11]  G. Xu,et al.  Fabrication and Properties of a Free-Standing Two-Dimensional Titania. , 2017, Journal of the American Chemical Society.

[12]  Shaojun Guo,et al.  Strain-controlled electrocatalysis on multimetallic nanomaterials , 2017 .

[13]  E. Stach,et al.  Strain Coupling of Conversion-type Fe3 O4 Thin Films for Lithium Ion Batteries. , 2017, Angewandte Chemie.

[14]  D. G. Walker,et al.  Tunable Mechanochemistry of Lithium Battery Electrodes. , 2017, ACS nano.

[15]  P. Ajayan,et al.  Remarkable supercapacitive performance of TiO2 nanotube arrays by introduction of oxygen vacancies , 2017 .

[16]  Yinzhu Jiang,et al.  Pseudocapacitance-Enhanced Li-Ion Microbatteries Derived by a TiN@TiO2 Nanowire Anode , 2017 .

[17]  D. Zhao,et al.  Constructing Three-Dimensional Mesoporous Bouquet-Posy-like TiO2 Superstructures with Radially Oriented Mesochannels and Single-Crystal Walls. , 2017, Journal of the American Chemical Society.

[18]  Yayuan Liu,et al.  Direct and continuous strain control of catalysts with tunable battery electrode materials , 2016, Science.

[19]  Yinzhu Jiang,et al.  Titanium dioxide nanotrees for high-capacity lithium-ion microbatteries , 2016 .

[20]  Adam P. Cohn,et al.  Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity , 2016, Nature Communications.

[21]  N. N. Tušar,et al.  TiO2–SiO2 films from organic-free colloidal TiO2 anatase nanoparticles as photocatalyst for removal of volatile organic compounds from indoor air , 2016 .

[22]  U. G. Vej-Hansen,et al.  Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction , 2016, Science.

[23]  W. Choi,et al.  TiO2 Nanotubes with Open Channels as Deactivation-Resistant Photocatalyst for the Degradation of Volatile Organic Compounds. , 2016, Environmental science & technology.

[24]  A. Bard,et al.  Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate. , 2015, Journal of the American Chemical Society.

[25]  Abdullah M. Al-Enizi,et al.  Radially oriented mesoporous TiO2 microspheres with single-crystal–like anatase walls for high-efficiency optoelectronic devices , 2015, Science Advances.

[26]  Yang Shao-Horn,et al.  Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells , 2014 .

[27]  Yi-sheng Liu,et al.  Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. , 2014, Chemical reviews.

[28]  C. Battaglia,et al.  Strain-induced indirect to direct bandgap transition in multilayer WSe2. , 2014, Nano letters.

[29]  Yi‐hong Ding,et al.  The Design of TiO2 Nanostructures (Nanoparticle, Nanotube, and Nanosheet) and Their Photocatalytic Activity , 2014 .

[30]  Xinjian Feng,et al.  Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties. , 2014, Nano letters.

[31]  N. Dasgupta,et al.  Semiconductor Nanowires for Artificial Photosynthesis , 2014 .

[32]  Henry J. Snaith,et al.  Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance , 2013, Nature.

[33]  E. Waclawik,et al.  TEM Investigation and FBB Model Explanation to the Phase Relationships between Titanates and Titanium Dioxides , 2010 .

[34]  E. Waclawik,et al.  Implications of precursor chemistry on the alkaline hydrothermal synthesis of Titania/ Titanate nanostructures , 2010 .

[35]  Meng Sun,et al.  Efficient degradation of benzene over LaVO4/TiO2 nanocrystalline heterojunction photocatalyst under visible light irradiation. , 2009, Environmental science & technology.

[36]  E. Aydil,et al.  Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells , 2008, Nanotechnology.

[37]  W. Han,et al.  Enhanced Optical Absorption Induced by Dense Nanocavities inside Titania Nanorods , 2007 .

[38]  D. Bavykin,et al.  Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications , 2006 .

[39]  Y. Nosaka,et al.  Behavior of superoxide radicals formed on TiO2 powder photocatalysts studied by a chemiluminescent probe method , 2002 .

[40]  M. Payne,et al.  Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane‐wave study , 2000 .

[41]  J. Nørskov,et al.  Effect of Strain on the Reactivity of Metal Surfaces , 1998 .

[42]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[43]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[44]  Lee,et al.  Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. , 1991, Physical review. B, Condensed matter.

[45]  D. Ollis,et al.  Is photocatalysis catalytic , 1980 .

[46]  S. Morrison Electrochemistry at Semiconductor and Oxidized Metal Electrodes , 1980 .