Mapping Maize Water Stress Based on UAV Multispectral Remote Sensing

[1]  Uri Yermiyahu,et al.  An insight to the performance of crop water stress index for olive trees , 2013 .

[2]  Hoam Chung,et al.  Adaptive Estimation of Crop Water Stress in Nectarine and Peach Orchards Using High-Resolution Imagery from an Unmanned Aerial Vehicle (UAV) , 2017, Remote. Sens..

[3]  James A. Brass,et al.  Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support , 2004 .

[4]  José O. Payero,et al.  Non-water-stressed baselines for calculating crop water stress index (CWSI) for alfalfa and tall fescue grass , 2005 .

[5]  S. Irmak,et al.  Variable upper and lower crop water stress index baselines for corn and soybean , 2006, Irrigation Science.

[6]  D. Nielsen Non water-stressed baselines for sunflowers , 1994 .

[7]  Cristian Paltineanu,et al.  Crop Water Stress in Peach Orchards and Relationships with Soil Moisture Content in a Chernozem of Dobrogea , 2013 .

[8]  Yan Huang,et al.  A comprehensive drought monitoring method integrating MODIS and TRMM data , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[9]  Sherwood B. Idso,et al.  On the stability of non-water-stressed baselines , 1984 .

[10]  M. Pérez-Ruiz,et al.  A cost-effective canopy temperature measurement system for precision agriculture: a case study on sugar beet , 2017, Precision Agriculture.

[11]  John R. Miller,et al.  Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .

[12]  P. Zarco-Tejada,et al.  Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera , 2012 .

[13]  Pablo J. Zarco-Tejada,et al.  Applicability and limitations of using the crop water stress index as an indicator of water deficits in citrus orchards , 2014 .

[14]  Peter Droogers,et al.  Effects of saline reclaimed waters and deficit irrigation on Citrus physiology assessed by UAV remote sensing , 2017 .

[15]  David Hernández-López,et al.  Uncooled Thermal Camera Calibration and Optimization of the Photogrammetry Process for UAV Applications in Agriculture , 2017, Sensors.

[16]  D. F. Heermann,et al.  Performance Characteristics of Self-Propelled Center-Pivot Sprinkler Irrigation System , 1968 .

[17]  D. Smart,et al.  Evaluation of Hyperspectral Reflectance Indexes to Detect Grapevine Water Status in Vineyards , 2007, American Journal of Enology and Viticulture.

[18]  Shaozhong Kang,et al.  Regulated deficit irrigation improved fruit quality and water use efficiency of pear-jujube trees , 2008 .

[19]  Jack Fishman,et al.  Effects of Ambient Ozone on Soybean Biophysical Variables and Mineral Nutrient Accumulation , 2018, Remote. Sens..

[20]  S. Idso,et al.  Normalizing the stress-degree-day parameter for environmental variability☆ , 1981 .

[21]  J. Araus,et al.  Infrared Thermal Imaging as a Rapid Tool for Identifying Water-Stress Tolerant Maize Genotypes of Different Phenology , 2013 .

[22]  G. Qiu,et al.  Application of a new method to evaluate crop water stress index , 2005, Irrigation Science.

[23]  D. Raes,et al.  Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas , 2009 .

[24]  Kendall C. DeJonge,et al.  Comparison of canopy temperature-based water stress indices for maize , 2015 .

[25]  M. A. Jiménez-Bello,et al.  Usefulness of thermography for plant water stress detection in citrus and persimmon trees , 2013 .

[26]  Kendall C. DeJonge,et al.  Minimizing instrumentation requirement for estimating crop water stress index and transpiration of maize , 2013, Irrigation Science.

[27]  M. S. Moran,et al.  Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index , 1994 .

[28]  E. Fereres,et al.  Improving the precision of irrigation in a pistachio farm using an unmanned airborne thermal system , 2014, Irrigation Science.

[29]  Alfonso Calera,et al.  Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users , 2017, Sensors.

[30]  Sherwood B. Idso,et al.  Non-water-stressed baselines: A key to measuring and interpreting plant water stress , 1982 .

[31]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[32]  Thomas J. Trout,et al.  Estimating maize water stress by standard deviation of canopy temperature in thermal imagery , 2016 .

[33]  Dong Wang,et al.  Infrared canopy temperature of early-ripening peach trees under postharvest deficit irrigation , 2010 .

[34]  J. Baluja,et al.  Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV) , 2012, Irrigation Science.

[35]  David C. Nielsen,et al.  Infrared thermometry and the crop water stress index. II : sampling procedures and interpretation , 1992 .

[36]  Pablo J. Zarco-Tejada,et al.  Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery , 2009 .

[37]  Sue E. Nokes,et al.  Non-Water-Stressed Baseline as a Tool for Dynamic Control of a Misting System for Propagation of Poinsettias , 2001 .

[38]  Lei Tian,et al.  Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV) , 2011 .

[39]  W. Bausch Soil background effects on reflectance-based crop coefficients for corn☆ , 1993 .

[40]  G. Hoogenboom,et al.  Integrating Growth Stage Deficit Irrigation into a Process Based Crop Model , 2017 .

[41]  Lav R. Khot,et al.  High Resolution Multispectral and Thermal Remote Sensing-Based Water Stress Assessment in Subsurface Irrigated Grapevines , 2017, Remote. Sens..

[42]  J. Flexas,et al.  UAVs challenge to assess water stress for sustainable agriculture , 2015 .

[43]  Yafit Cohen,et al.  Using Time Series of High-Resolution Planet Satellite Images to Monitor Grapevine Stem Water Potential in Commercial Vineyards , 2018, Remote. Sens..

[44]  Yafit Cohen,et al.  Evaluating water stress in irrigated olives: correlation of soil water status, tree water status, and thermal imagery , 2009, Irrigation Science.

[45]  David C. Nielsen,et al.  Evaluating the Crop Water Stress Index and its correlation with latent heat and CO2 fluxes over winter wheat and maize in the North China plain , 2010 .

[46]  Saleh Taghvaeian,et al.  Infrared Thermometry to Estimate Crop Water Stress Index and Water Use of Irrigated Maize in Northeastern Colorado , 2012, Remote. Sens..

[47]  Pablo J. Zarco-Tejada,et al.  A Tool For Detecting Crop Water Status Using Airborne High-resolution Thermal Imagery , 2014 .

[48]  L. G. Santesteban,et al.  High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard , 2017 .

[49]  P. Zarco-Tejada,et al.  Mapping crop water stress index in a ‘Pinot-noir’ vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle , 2014, Precision Agriculture.

[50]  L. C. Purcell,et al.  Aerial canopy temperature differences between fast‐ and slow‐wilting soya bean genotypes , 2018 .

[51]  R. Zorer,et al.  EFFECTS OF DROUGHT STRESS ON CHLOROPHYLL FLUORESCENCE AND PHOTOSYNTHETIC PIGMENTS IN GRAPEVINE LEAVES (VITIS VINIFERA CV. 'WHITE RIESLING') , 2007 .

[52]  Yoshio Inoue,et al.  Analysis of Airborne Optical and Thermal Imagery for Detection of Water Stress Symptoms , 2018, Remote. Sens..

[53]  S. Idso,et al.  Canopy temperature as a crop water stress indicator , 1981 .

[54]  T. A. Howell,et al.  Evaluation of crop water stress index for LEPA irrigated corn , 1999, Irrigation Science.

[55]  Kendall C. DeJonge,et al.  Comparison of three crop water stress index models with sap flow measurements in maize , 2018 .

[56]  Pablo J. Zarco-Tejada,et al.  Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV) , 2013 .

[57]  Gaylon S. Campbell,et al.  Irrigation Scheduling Using Soil Moisture Measurements: Theory and Practice , 1982 .

[58]  H. Medrano,et al.  Validation of thermal indices for water status identification in grapevine , 2014 .

[59]  Quazi K. Hassan,et al.  Remote sensing of agricultural drought monitoring: A state of art review , 2016 .

[60]  P. Zarco-Tejada,et al.  A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index , 2013 .

[61]  D. Z. Haman,et al.  Determination of Crop Water Stress Index for Irrigation Timing and Yield Estimation of Corn , 2000 .

[62]  M. Meron,et al.  Crop water status estimation using thermography: multi-year model development using ground-based thermal images , 2014, Precision Agriculture.

[63]  P. Zarco-Tejada,et al.  Seasonal evolution of crop water stress index in grapevine varieties determined with high-resolution remote sensing thermal imagery , 2015, Irrigation Science.

[64]  Kendall C. DeJonge,et al.  Conventional and simplified canopy temperature indices predict water stress in sunflower , 2014 .

[65]  Matthew Bardeen,et al.  Selecting Canopy Zones and Thresholding Approaches to Assess Grapevine Water Status by Using Aerial and Ground-Based Thermal Imaging , 2016, Remote. Sens..

[66]  Chandra A. Madramootoo,et al.  Recent advances in crop water stress detection , 2017, Comput. Electron. Agric..

[67]  Yoshio Inoue,et al.  Remote estimation of leaf transpiration rate and stomatal resistance based on infrared thermometry , 1990 .

[68]  R. Teskey,et al.  Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra , 2017, Journal of experimental botany.

[69]  Yafit Cohen,et al.  How sensitive is the CWSI to changes in solar radiation? , 2013 .