High resolution urban morphology data for urban wind flow modeling
暂无分享,去创建一个
Abstract The application of urban forestry methods and technologies to a number of practical problems can be further enhanced by the use and incorporation of localized, high resolution wind and temperature fields into their analysis methods. The numerical simulation of these micrometeorological fields will represent the interactions and influences of urban structures, vegetation elements, and variable terrain as an integral part of the dynamics of an urban domain. Detailed information of the natural and man-made components that make up the urban area is needed to more realistically model meteorological fields in urban domains. Simulating high resolution wind and temperatures over and through an urban domain utilizing detailed morphology data can also define and quantify local areas where urban forestry applications can contribute to better solutions. Applications such as the benefits of planting trees for shade purposes can be considered, planned, and evaluated for their impact on conserving energy and cooling costs as well as the possible reconfiguration or removal of trees and other barriers for improved airflow ventilation and similar processes. To generate these fields, a wind model must be provided, as a minimum, the location, type, height, structural silhouette, and surface roughness of these components, in order to account for the presence and effects of these land morphology features upon the ambient airflow. The morphology of Sacramento, CA has been characterized and quantified in considerable detail primarily for wind flow modeling, simulation, and analyses, but can also be used for improved meteorological analyses, urban forestry, urban planning, and other urban related activities. Morphology methods previously developed by Ellefsen are applied to the Sacramento scenario with a high resolution grid of 100 m × 100 m. The Urban Morphology Scheme defines Urban Terrain Zones (UTZ) according to how buildings and other urban elements are structured and placed with respect to each other. The urban elements within the 100 m × 100 m cells (one hectare) are further described and digitized as building height, building footprint (in percent), reflectivity of its roof, pitched roof or flat, building's long axis orientation, footprint of impervious surface and its reflectivity, footprint of canopy elements, footprint of woodlots, footprint of grass area, and footprint of water surface. A variety of maps, satellite images, low level aerial photographs, and street level photographs are the raw data used to quantify these urban properties. The final digitized morphology database resides in a spreadsheet ready for use on ordinary personal computers.
[1] Richard A Ellefsen. Urban Terrain Zone Characteristics , 1987 .
[2] P. Thunis,et al. Topographic Vorticity-Mode Mesoscale-β (TVM) Model. Part II: Evaluation , 1996 .
[3] R. Cionco. On the coupling of canopy flow to ambient flow for a variety of vegetation types and densities , 1983 .
[4] Ronald M. Cionco,et al. A Mathematical Model for Air Flow in a Vegetative Canopy , 1965 .