Crystal structure of active CDK4-cyclin D and mechanistic basis for abemaciclib efficacy

[1]  M. Goetz,et al.  Abemaciclib as initial therapy for advanced breast cancer: MONARCH 3 updated results in prognostic subgroups , 2021, NPJ breast cancer.

[2]  T. Meyer,et al.  Clinical CDK4/6 inhibitors induce selective and immediate dissociation of p21 from cyclin D-CDK4 to inhibit CDK2 , 2021, Nature Communications.

[3]  C. Falkson,et al.  Adjuvant cyclin‐dependent kinase 4/6 inhibition in hormone receptor–positive breast cancer: One Monarch to rule them all? , 2021, Cancer.

[4]  Jason D. Buenrostro,et al.  Unlocking PDAC initiation with AP-1 , 2021, Nature Cancer.

[5]  W. Sellers,et al.  Distinct CDK6 complexes determine tumor cell response to CDK4/6 inhibitors and degraders , 2020, Nature Cancer.

[6]  P. Neven,et al.  Abemaciclib Combined With Endocrine Therapy for the Adjuvant Treatment of HR+, HER2−, Node-Positive, High-Risk, Early Breast Cancer (monarchE) , 2020, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  M. Malumbres,et al.  Mechanisms of Sensitivity and Resistance to CDK4/6 Inhibition. , 2020, Cancer cell.

[8]  K. Shokat,et al.  p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition , 2019, Science.

[9]  M. J. Chalmers,et al.  A Decoupled Automation Platform for Hydrogen/Deuterium Exchange Mass Spectrometry Experiments , 2019, Journal of The American Society for Mass Spectrometry.

[10]  T. Meyer,et al.  Transient Hysteresis in CDK4/6 Activity Underlies Passage of the Restriction Point in G1. , 2019, Molecular cell.

[11]  Christopher J. Williams,et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix , 2019, Acta crystallographica. Section D, Structural biology.

[12]  Jane A. Endicott,et al.  Structural insights into the functional diversity of the CDK–cyclin family , 2018, Open Biology.

[13]  Christopher J. Williams,et al.  MolProbity: More and better reference data for improved all‐atom structure validation , 2018, Protein science : a publication of the Protein Society.

[14]  M. Goetz,et al.  MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  P. Neven,et al.  MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[16]  Jian Du,et al.  Preclinical characterization of abemaciclib in hormone receptor positive breast cancer , 2017, Oncotarget.

[17]  K. Gelmon,et al.  Palbociclib and Letrozole in Advanced Breast Cancer. , 2016, The New England journal of medicine.

[18]  Ping Chen,et al.  Spectrum and Degree of CDK Drug Interactions Predicts Clinical Performance , 2016, Molecular Cancer Therapeutics.

[19]  D. Agard,et al.  Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase , 2016, Science.

[20]  S. Loi,et al.  Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. , 2016, The Lancet. Oncology.

[21]  S. Paternot,et al.  The CDK4/CDK6 inhibitor PD0332991 paradoxically stabilizes activated cyclin D3-CDK4/6 complexes , 2014, Cell cycle.

[22]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[23]  L. Hengst,et al.  CDK4 T172 Phosphorylation Is Central in a CDK7-Dependent Bidirectional CDK4/CDK2 Interplay Mediated by p21 Phosphorylation at the Restriction Point , 2013, PLoS genetics.

[24]  Karl A. Merrick,et al.  A Cdk7-Cdk4 T-loop phosphorylation cascade promotes G1 progression. , 2013, Molecular cell.

[25]  M. J. Chalmers,et al.  HDX Workbench: Software for the Analysis of H/D Exchange MS Data , 2012, Journal of The American Society for Mass Spectrometry.

[26]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[27]  Clemens Vonrhein,et al.  Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER , 2012, Acta crystallographica. Section D, Biological crystallography.

[28]  A. Sharff,et al.  Data processing and analysis with the autoPROC toolbox , 2011, Acta crystallographica. Section D, Biological crystallography.

[29]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[30]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[31]  A. Giordano,et al.  Cell cycle kinases as therapeutic targets for cancer , 2009, Nature Reviews Drug Discovery.

[32]  Rajiv Chopra,et al.  Crystal structure of human CDK4 in complex with a D-type cyclin , 2009, Proceedings of the National Academy of Sciences.

[33]  M. E. M. Noble,et al.  The structure of CDK4/cyclin D3 has implications for models of CDK activation , 2009, Proceedings of the National Academy of Sciences.

[34]  S. Blain,et al.  Differential Modification of p27Kip1 Controls Its Cyclin D-cdk4 Inhibitory Activity , 2007, Molecular and Cellular Biology.

[35]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[36]  Anindya Dutta,et al.  Autocatalytic Phosphorylation of CDK2 at the Activating Thr160 , 2007, Cell cycle.

[37]  U. Schulze-Gahmen,et al.  Toward understanding the structural basis of cyclin-dependent kinase 6 specific inhibition. , 2006, Journal of medicinal chemistry.

[38]  J. Massagué,et al.  G1 cell-cycle control and cancer , 2004, Nature.

[39]  G. Peters,et al.  Induced Expression of p16INK4a Inhibits Both CDK4- and CDK2-Associated Kinase Activity by Reassortment of Cyclin-CDK-Inhibitor Complexes , 1999, Molecular and Cellular Biology.

[40]  J. Massagué,et al.  Differential Interaction of the Cyclin-dependent Kinase (Cdk) Inhibitor p27Kip1 with Cyclin A-Cdk2 and Cyclin D2-Cdk4* , 1997, The Journal of Biological Chemistry.

[41]  J. LaBaer,et al.  New functional activities for the p21 family of CDK inhibitors. , 1997, Genes & development.

[42]  Kornelia Polyak,et al.  Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex , 1995, Nature.

[43]  R. Weinberg,et al.  Physical interaction of the retinoblastoma protein with human D cyclins , 1993, Cell.

[44]  J. Saiz,et al.  Right‐sided non‐recurrent laryngeal nerve without any vascular anomaly: an anatomical trap , 2021, ANZ journal of surgery.

[45]  Birgit Kasch,et al.  Next Generation , 2016, Im OP.