Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation.

[1]  Hao Wu,et al.  Structural basis for the lack of E2 interaction in the RING domain of TRAF2. , 2009, Biochemistry.

[2]  J. Houtman,et al.  Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters , 2009, Nature Structural &Molecular Biology.

[3]  Erinna F. Lee,et al.  TRAF2 Must Bind to Cellular Inhibitors of Apoptosis for Tumor Necrosis Factor (TNF) to Efficiently Activate NF-κB and to Prevent TNF-induced Apoptosis , 2009, The Journal of Biological Chemistry.

[4]  Greg L. Hura,et al.  E2 interaction and dimerization in the crystal structure of TRAF6 , 2009, Nature Structural &Molecular Biology.

[5]  P. Scheurich,et al.  Tumor necrosis factor receptor-associated factor-1 enhances proinflammatory TNF receptor-2 signaling and modifies TNFR1–TNFR2 cooperation , 2009, Oncogene.

[6]  J. B. Garrison,et al.  TRAF2-binding BIR1 domain of c-IAP2/MALT1 fusion protein is essential for activation of NF-κB , 2009, Oncogene.

[7]  Nobuhiro Suzuki,et al.  Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-κB Activation , 2009, Cell.

[8]  T. Mak,et al.  Activation of noncanonical NF-κB requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2, TRAF3 and the kinase NIK , 2008, Nature Immunology.

[9]  J. Keats,et al.  Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling , 2008, Nature Immunology.

[10]  S. Baird,et al.  IAP-targeted therapies for cancer , 2008, Oncogene.

[11]  J. Waring,et al.  Both cIAP1 and cIAP2 regulate TNFα-mediated NF-κB activation , 2008, Proceedings of the National Academy of Sciences.

[12]  W. Fairbrother,et al.  c-IAP1 and c-IAP2 Are Critical Mediators of Tumor Necrosis Factor α (TNFα)-induced NF-κB Activation* , 2008, Journal of Biological Chemistry.

[13]  M. Bertrand,et al.  cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. , 2008, Molecular cell.

[14]  Xiaodong Wang,et al.  TNF-α Induces Two Distinct Caspase-8 Activation Pathways , 2008, Cell.

[15]  David L. Vaux,et al.  IAP Antagonists Target cIAP1 to Induce TNFα-Dependent Apoptosis , 2007, Cell.

[16]  Vishva M. Dixit,et al.  IAP Antagonists Induce Autoubiquitination of c-IAPs, NF-κB Activation, and TNFα-Dependent Apoptosis , 2007, Cell.

[17]  J. Minna,et al.  Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. , 2007, Cancer cell.

[18]  P. Lucas,et al.  A dual role for the API2 moiety in API2-MALT1-dependent NF-κB activation: heterotypic oligomerization and TRAF2 recruitment , 2007, Oncogene.

[19]  Jiahuai Han,et al.  XIAP induces NF-kappaB activation via the BIR1/TAB1 interaction and BIR1 dimerization. , 2007, Molecular cell.

[20]  G. Cheng,et al.  Specificity of TRAF3 in Its Negative Regulation of the Noncanonical NF-κB Pathway* , 2006, Journal of Biological Chemistry.

[21]  V. Dixit,et al.  The Inhibitor of Apoptosis Protein Fusion c-IAP2·MALT1 Stimulates NF-κB Activation Independently of TRAF1 AND TRAF2* , 2006, Journal of Biological Chemistry.

[22]  Gabriel Pineda,et al.  Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. , 2006, Molecular cell.

[23]  S. Srinivasula,et al.  Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation , 2006, Nature Cell Biology.

[24]  John Calvin Reed,et al.  Distinct BIR Domains of cIAP1 Mediate Binding to and Ubiquitination of Tumor Necrosis Factor Receptor-associated Factor 2 and Second Mitochondrial Activator of Caspases* , 2006, Journal of Biological Chemistry.

[25]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[26]  Jong-Bok Yoon,et al.  Mass spectrometric analysis of tumor necrosis factor receptor‐associated factor 1 ubiquitination mediated by cellular inhibitor of apoptosis 2 , 2004, Proteomics.

[27]  M. Kelliher,et al.  The Kinase Activity of Rip1 Is Not Required for Tumor Necrosis Factor-α-induced IκB Kinase or p38 MAP Kinase Activation or for the Ubiquitination of Rip1 by Traf2* , 2004, Journal of Biological Chemistry.

[28]  M. Thome CARMA1, BCL-10 and MALT1 in lymphocyte development and activation , 2004, Nature Reviews Immunology.

[29]  P. Scheurich,et al.  Tumor Necrosis Factor Receptor-associated Factor (TRAF) 1 Regulates CD40-induced TRAF2-mediated NF-κB Activation* , 2004, Journal of Biological Chemistry.

[30]  Yongwon Choi,et al.  Regulation of the Subcellular Localization of Tumor Necrosis Factor Receptor–associated Factor (TRAF)2 by TRAF1 Reveals Mechanisms of TRAF2 Signaling , 2002, The Journal of experimental medicine.

[31]  Ingela Parmryd,et al.  Apoptotic crosstalk of TNF receptors: TNF-R2-induces depletion of TRAF2 and IAP proteins and accelerates TNF-R1-dependent activation of caspase-8. , 2002, Journal of cell science.

[32]  F. Alt,et al.  TRAF1 is a negative regulator of TNF signaling. enhanced TNF signaling in TRAF1-deficient mice. , 2001, Immunity.

[33]  R. Beyaert,et al.  TRAF1 is a TNF inducible regulator of NF‐κB activation , 1999 .

[34]  R. Hakem,et al.  Gene targeting in the analysis of mammalian apoptosis and TNF receptor superfamily signaling , 1999, Immunological reviews.

[35]  Hao Wu,et al.  Structural basis for self-association and receptor recognition of human TRAF2 , 1999, Nature.

[36]  C. Y. Wang,et al.  NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. , 1998, Science.

[37]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[38]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[39]  D. Goeddel,et al.  TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. , 1996, Immunity.

[40]  Hong-Bing Shu,et al.  TRADD–TRAF2 and TRADD–FADD Interactions Define Two Distinct TNF Receptor 1 Signal Transduction Pathways , 1996, Cell.

[41]  Mike Rothe,et al.  The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins , 1995, Cell.

[42]  T. Clackson,et al.  A hot spot of binding energy in a hormone-receptor interface , 1995, Science.

[43]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[44]  D. Goeddel,et al.  A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor , 1994, Cell.

[45]  M. Lawrence,et al.  Shape complementarity at protein/protein interfaces. , 1993, Journal of molecular biology.

[46]  E. Solary,et al.  cIAP1-dependent TRAF2 degradation regulates the differentiation of monocytes into macrophages and their response to CD40 ligand. , 2009, Blood.

[47]  Soo Young Lee,et al.  TRAF1 and its biological functions. , 2007, Advances in experimental medicine and biology.

[48]  G. Cheng,et al.  Specificity of TRAF3 in its negative regulation of the noncanonical NF-kappa B pathway. , 2007, The Journal of biological chemistry.

[49]  Vinay Tergaonkar,et al.  IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. , 2007, Cell.

[50]  John Calvin Reed,et al.  Targeting TRAfs for therapeutic intervention. , 2007, Advances in experimental medicine and biology.

[51]  S. Srinivasula,et al.  Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. , 2006, Nature cell biology.

[52]  Thomas Terwilliger,et al.  SOLVE and RESOLVE: automated structure solution, density modification and model building. , 2004, Journal of synchrotron radiation.

[53]  P. Scheurich,et al.  Tumor necrosis factor receptor-associated factor (TRAF) 1 regulates CD40-induced TRAF2-mediated NF-kappaB activation. , 2004, The Journal of biological chemistry.

[54]  R. Beyaert,et al.  TRAF1 is a TNF inducible regulator of NF-kappaB activation. , 1999, FEBS letters.

[55]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[56]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.