Analytical study of the nonlinear Schrödinger equation with an arbitrary linear time-dependent potential in quasi-one-dimensional Bose–Einstein condensates

Abstract Under investigation in this paper is a nonlinear Schrodinger equation with an arbitrary linear time-dependent potential , which governs the soliton dynamics in quasi-one-dimensional Bose–Einstein condensates (quasi-1DBECs). With Painleve analysis method performed to this model, its integrability is firstly examined. Then, the distinct treatments based on the truncated Painleve expansion, respectively, give the bilinear form and the Painleve–Backlund transformation with a family of new exact solutions. Furthermore, via the computerized symbolic computation, a direct method is employed to easily and directly derive the exact analytical dark- and bright-solitonic solutions. At last, of physical and experimental interests, these solutions are graphically discussed so as to better understand the soliton dynamics in quasi-1DBECs.

[1]  Hong-Gang Luo,et al.  Dark and bright solitons in a quasi-one-dimensional Bose-Einstein condensate , 2003 .

[2]  Bo Tian,et al.  Spherical nebulons and Bäcklund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation , 2005 .

[3]  M. Kasevich,et al.  Macroscopic quantum interference from atomic tunnel arrays , 1998, Science.

[4]  Phillips,et al.  Generating solitons by phase engineering of a bose-einstein condensate , 2000, Science.

[5]  Guosheng Zhou,et al.  Dark soliton solution for higher-order nonlinear Schrödinger equation with variable coefficients , 2004 .

[6]  M. P. Barnett,et al.  Symbolic calculation in chemistry: Selected examples , 2004 .

[7]  Tao Xu,et al.  Symbolic-computation construction of transformations for a more generalized nonlinear Schrödinger equation with applications in inhomogeneous plasmas, optical fibers, viscous fluids and Bose-Einstein condensates , 2007 .

[8]  Yuri S. Kivshar,et al.  Dark optical solitons: physics and applications , 1998 .

[9]  Bo Tian,et al.  On the solitonic structures of the cylindrical dust-acoustic and dust-ion-acoustic waves with symbolic computation , 2005 .

[10]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[11]  Chuan-Sheng Liu,et al.  Solitons in nonuniform media , 1976 .

[12]  E. Hagley,et al.  Four-wave mixing with matter waves , 1999, Nature.

[13]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[14]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[15]  Bo Tian,et al.  Cylindrical nebulons, symbolic computation and Bäcklund transformation for the cosmic dust acoustic waves , 2005 .

[16]  C. J. Pethick,et al.  Solitary waves in clouds of Bose-Einstein condensed atoms , 1998 .

[17]  C. Sackett,et al.  Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number , 1997 .

[18]  Bo Tian,et al.  Transformations for a generalized variable-coefficient Korteweg de Vries model from blood vessels, Bose Einstein condensates, rods and positons with symbolic computation , 2006 .

[19]  Woo-Pyo Hong,et al.  Comment on: “Spherical Kadomtsev Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation” [Phys. Lett. A 340 (2005) 243] , 2007 .

[20]  R. Ballagh,et al.  SOLITARY-WAVE SOLUTIONS TO NONLINEAR SCHRODINGER EQUATIONS , 1997 .

[21]  Bo Tian,et al.  Reply to: “Comment on: ‘Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation’ ” [Phys. Lett. A 361 (2007) 520] , 2007 .

[22]  M. Kruskal,et al.  New similarity reductions of the Boussinesq equation , 1989 .

[23]  Bo Tian,et al.  Cylindrical Kadomtsev–Petviashvili model, nebulons and symbolic computation for cosmic dust ion-acoustic waves , 2006 .

[24]  J. Nathan Kutz,et al.  Bose-Einstein Condensates in Standing Waves , 2001 .

[25]  Yubao Sun,et al.  Hirota method for the nonlinear Schrödinger equation with an arbitrary linear time-dependent potential , 2007, 1012.5470.

[26]  Bo Tian,et al.  Comment on ``Exact solutions of cylindrical and spherical dust ion acoustic waves'' [Phys. Plasmas 10, 4162 (2003)] , 2005 .

[27]  Bo Tian,et al.  Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers [rapid communication] , 2005 .

[28]  P. Zoller,et al.  Creation of Dark Solitons and Vortices in Bose-Einstein Condensates , 1998 .

[29]  John Gibbon,et al.  The Painlevé Property and Hirota's Method , 1985 .

[30]  B. Tian,et al.  Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas , 2007 .

[31]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[32]  D. Walls,et al.  The physics of trapped dilute-gas Bose–Einstein condensates , 1998 .

[33]  Zhenya Yan,et al.  Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces , 2001 .

[34]  E. H. Kerner NOTE ON THE FORCED AND DAMPED OSCILLATOR IN QUANTUM MECHANICS , 1958 .

[35]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[36]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[37]  Bo Tian,et al.  Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: New transformation with burstons, brightons and symbolic computation , 2006 .

[38]  Cheng Zhang,et al.  Multisoliton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schrödinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications , 2008 .

[39]  Gerard J. Milburn,et al.  Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential , 1997 .

[40]  Stationary solutions of the one-dimensional nonlinear Schrodinger equation: II. Case of attractive nonlinearity , 1999, cond-mat/9911177.

[41]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[42]  J C Bronski,et al.  Bose-Einstein condensates in standing waves: the cubic nonlinear Schrödinger equation with a periodic potential. , 2001, Physical review letters.

[43]  Bo Tian,et al.  (3+1)-dimensional generalized Johnson model for cosmic dust-ion-acoustic nebulons with symbolic computation , 2006 .

[44]  Konotop,et al.  Dynamics and interaction of solitons on an integrable inhomogeneous lattice. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  David Landhuis,et al.  Bose–Einstein condensation of atomic hydrogen , 1998, physics/9809017.

[46]  P C Haljan,et al.  Watching dark solitons decay into vortex rings in a Bose-Einstein condensate. , 2001, Physical review letters.

[47]  C. E. Wieman,et al.  Vortices in a Bose Einstein condensate , 1999, QELS 2000.

[48]  Lei Wu,et al.  Bright solitons on a continuous wave background for the inhomogeneous nonlinear Schrödinger equation in plasma , 2006 .

[49]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[50]  Russell J. Donnelly,et al.  Quantized Vortices in Helium II , 1991 .

[51]  Bo Tian,et al.  Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation , 2005 .

[52]  Xing Lü,et al.  Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications , 2007 .

[53]  Ying Wu,et al.  Bose-Hubbard model on a ring: analytical results in a strong interaction limit and incommensurate filling , 2006 .

[54]  Holland,et al.  Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[55]  Jie-Fang Zhang,et al.  Bose¿Einstein solitons in time-dependent linear potential , 2006 .

[56]  Ying Wu,et al.  Analytical results for energy spectrum and eigenstates of a Bose-Einstein condensate in a Mott insulator state , 2003 .

[57]  U Al Khawaja,et al.  Bright soliton trains of trapped Bose-Einstein condensates. , 2002, Physical review letters.

[58]  Dynamics of the Bose-Einstein condensate: quasi-one-dimension and beyond , 2000, cond-mat/0004287.

[59]  C. Salomon,et al.  Formation of a Matter-Wave Bright Soliton , 2002, Science.

[60]  M. A. D. Moura,et al.  Nonlinear Schrodinger solitons in the presence of an external potential , 1994 .

[61]  S. Burger,et al.  Dark solitons in Bose-Einstein condensates , 1999, QELS 2000.

[62]  Bo Tian,et al.  On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations , 2007 .

[63]  Gopal Das,et al.  Response to “Comment on ‘A new mathematical approach for finding the solitary waves in dusty plasma’ ” [Phys. Plasmas 6, 4392 (1999)] , 1999 .

[64]  Bernard Deconinck,et al.  Stability of exact solutions of the defocusing nonlinear Schrödinger equation with periodic potential in two dimensions , 2001 .

[65]  Bo Tian,et al.  Transformations for a generalized variable-coefficient nonlinear Schrödinger model from plasma physics, arterial mechanics and optical fibers with symbolic computation , 2005 .

[66]  T. Gustavson,et al.  Realization of Bose-Einstein condensates in lower dimensions. , 2001, Physical review letters.

[67]  Bo Tian,et al.  Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: Variable-coefficient bilinear form, Bäcklund transformation, brightons and symbolic computation , 2007 .

[68]  Bo Tian,et al.  Cosmic dust-ion-acoustic waves, spherical modified Kadomtsev-Petviashvili model, and symbolic computation , 2006 .