Absolute stability and dynamical stabilisation in predator-prey systems

Many ecological systems exhibit multi-year cycles. In such systems, invasions have a complicated spatiotemporal structure. In particular, it is common for unstable steady states to exist as long-term transients behind the invasion front, a phenomenon known as dynamical stabilisation. We combine absolute stability theory and computation to predict how the width of the stabilised region depends on parameter values. We develop our calculations in the context of a model for a cyclic predator-prey system, in which the invasion front and spatiotemporal oscillations of predators and prey are separated by a region in which the coexistence steady state is dynamically stabilised.

[1]  Jonathan A. Sherratt,et al.  Oscillations and chaos behind predator–prey invasion: mathematical artifact or ecological reality? , 1997 .

[2]  I. Washitani,et al.  Invasion Status and Potential Ecological Impacts of an Invasive Alien Bumblebee, Bombus terrestris L. (Hymenoptera: Apidae) Naturalized in Southern Hokkaido, Japan , 2004 .

[3]  J. Sherratt,et al.  Locating the transition from periodic oscillations to spatiotemporal chaos in the wake of invasion , 2009, Proceedings of the National Academy of Sciences.

[4]  J. Brock,et al.  Plant Invasions: Human perception, Ecological Impacts and Management , 2008 .

[5]  J. Sherratt,et al.  Periodic travelling waves in cyclic populations: field studies and reaction–diffusion models , 2008, Journal of The Royal Society Interface.

[6]  Steven R. Dunbar,et al.  Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic orbits , 1986 .

[7]  Jonathan A. Sherratt,et al.  Periodic travelling waves in cyclic predator–prey systems , 2001 .

[8]  Sergei Petrovskii,et al.  Spatiotemporal patterns in ecology and epidemiology , 2007 .

[9]  M. Oli Population cycles of small rodents are caused by specialist predators: or are they? , 2003 .

[10]  E. Korpimäki,et al.  Changes in population structure and reproduction during a 3‐yr population cycle of voles , 2002 .

[11]  Robert M. May,et al.  Theoretical Ecology: Principles and Applications , 1977 .

[12]  N. Stenseth,et al.  Dynamic effects of predators on cyclic voles: field experimentation and model extrapolation , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[13]  P. Turchin,et al.  An Empirically Based Model for Latitudinal Gradient in Vole Population Dynamics , 1997, The American Naturalist.

[14]  N. Shigesada,et al.  Diffusive waves, dynamical stabilization and spatio-temporal chaos in a community of three competitive species , 2001 .

[15]  Erkki Korpimäki,et al.  Experimental reduction of predators reverses the crash phase of small-rodent cycles , 1998 .

[16]  J. E. Byers,et al.  Five Potential Consequences of Climate Change for Invasive Species , 2008, Conservation biology : the journal of the Society for Conservation Biology.

[17]  Nancy Kopell,et al.  Plane Wave Solutions to Reaction‐Diffusion Equations , 1973 .

[18]  M. Clerc,et al.  Front propagation into unstable states in discrete media , 2016, 1605.00556.

[19]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.

[20]  Sergei Petrovskii,et al.  Dynamical stabilization of an unstable equilibrium in chemical and biological systems , 2002 .

[21]  A. J. Lotka,et al.  Elements of Physical Biology. , 1925, Nature.

[22]  Matthew J. Smith,et al.  Absolute Stability of Wavetrains Can Explain Spatiotemporal Dynamics in Reaction-Diffusion Systems of Lambda-Omega Type , 2009, SIAM J. Appl. Dyn. Syst..

[23]  Kazuhiro Nozaki,et al.  Pattern selection and spatiotemporal transition to chaos in the Ginzburg-Landau equation , 1983 .

[24]  Xavier Lambin,et al.  The impact of weasel predation on cyclic field-vole survival: the specialist predator hypothesis contradicted , 2002 .

[25]  Björn Sandstede,et al.  Absolute and Convective Instabilities of Waves on Unbounded and Large Bounded Domains , 2022 .

[26]  M A Lewis,et al.  How predation can slow, stop or reverse a prey invasion , 2001, Bulletin of mathematical biology.

[27]  R. Powell,et al.  The Natural History of Weasels and Stoats , 1991 .

[28]  Marcus R. Garvie Finite-Difference Schemes for Reaction–Diffusion Equations Modeling Predator–Prey Interactions in MATLAB , 2007, Bulletin of mathematical biology.

[29]  Steven R. Dunbar,et al.  Travelling wave solutions of diffusive Lotka-Volterra equations , 1983 .

[30]  J A Sherratt,et al.  Generation of periodic waves by landscape features in cyclic predator–prey systems , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  D. Yalden,et al.  An estimate of the impact of predators on the British Field Vole Microtus agrestis population , 1998 .

[32]  S. Harris,et al.  Population biology of stoats ( Mustela erminea ) and weasels ( Mustela nivalis ) on game estates in Great Britain , 2002 .

[33]  Björn Sandstede,et al.  Computing absolute and essential spectra using continuation , 2007 .

[34]  Thomas N. Sherratt,et al.  Use of coupled oscillator models to understand synchrony and travelling waves in populations of the field vole Microtus agrestis in northern England , 2000 .

[35]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[36]  Jennifer J. H. Reynolds,et al.  Delayed induced silica defences in grasses and their potential for destabilising herbivore population dynamics , 2012, Oecologia.

[37]  P. Turchin Complex Population Dynamics: A Theoretical/Empirical Synthesis , 2013 .

[38]  J. M. Fraile,et al.  General conditions for the existence of a Critical point-periodic wave front connection for reaction-diffusion systems , 1989 .

[39]  J. Sherratt,et al.  Propagating fronts in the complex Ginzburg-Landau equation generate fixed-width bands of plane waves. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.