Voronoi diagrams in a river
暂无分享,去创建一个
[1] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..
[2] Chee-Keng Yap,et al. AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..
[3] Michael Ian Shamos,et al. Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[4] B. Boots,et al. Voronoi (Thiessen) polygons , 1987 .
[5] Kazuo Murota,et al. IMPROVEMENTS OF THE INCREMENTAL METHOD FOR THE VORONOI DIAGRAM WITH COMPUTATIONAL COMPARISON OF VARIOUS ALGORITHMS , 1984 .
[6] D. Mount. Voronoi Diagrams on the Surface of a Polyhedron. , 1985 .
[7] Franz Aurenhammer,et al. An optimal algorithm for constructing the weighted voronoi diagram in the plane , 1984, Pattern Recognit..
[8] Hiroshi Imai,et al. Voronoi Diagram in the Laguerre Geometry and its Applications , 1985, SIAM J. Comput..
[9] D. H. McLain,et al. Two Dimensional Interpolation from Random Data , 1976, Comput. J..
[10] D. T. Lee,et al. On k-Nearest Neighbor Voronoi Diagrams in the Plane , 1982, IEEE Transactions on Computers.
[11] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[12] L. De Floriani. A pyramidal data structure for triangle-based surface description , 1989, IEEE Computer Graphics and Applications.
[13] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[14] Robert L. Scot Drysdale,et al. Voronoi diagrams based on convex distance functions , 1985, SCG '85.
[15] Vijay Srinivasan,et al. Voronoi Diagram for Multiply-Connected Polygonal Domains I: Algorithm , 1987, IBM J. Res. Dev..
[16] D. T. Lee,et al. Computational Geometry—A Survey , 1984, IEEE Transactions on Computers.